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ABSTRACT:  The Virtual Fields Method (VFM) is a powerful technique for the calculation of spatial distributions of 
material properties from experimentally-determined displacement fields. A Fourier-series-based extension to the VFM 
(the F-VFM) is presented here, in which the unknown stiffness distribution is parameterised in the spatial frequency 
domain rather than in the spatial domain as used in the classical VFM. We summarise here the theory of the F-VFM for 
the case of elastic isotropic thin structures with known boundary conditions. An efficient numerical algorithm based on 
the 2-D Fast Fourier Transform reduces the computation time by 3-4 orders of magnitude compared to a direct 
implementation of the F-VFM for typical experimental dataset sizes. Reconstruction of stiffness distributions with the F-
VFM has been validated on several stiffness distribution scenarios, one of which is presented here, in which a difference 
of about 0.5% was achieved between the reference and recovered stiffness distributions. 

1. INTRODUCTION 

Inverse problems may arise in solid mechanics when there is significant unknown variation in the spatial distribution of 
the material properties, i.e., of the constitutive equations, or the parameters in those equations. Finite element model 
updating (FEMU) is one method to solve problems of this type, by adjusting an approximate finite element model until the 
responses it produces are as close to those acquired from experiments as possible.  
 
An alternative approach is the virtual fields method (VFM). The development of the VFM was inspired by a relevant 
interpretation of the equation of the virtual work principle [1]. The advantage of the VFM compared to other methods is its 
ability to solve inverse problems of this type without any iteration. Numerous applications of the VFM to date can be 
found in [1]. The key feature in any application of the VFM is the selection of the virtual fields. Several techniques based 
on different choices of virtual fields have been presented [2-5]. The common point is the selection of the virtual fields as 
polynomials of spatial variables (either on the whole domain or in a piecewise form), and the material properties are 
considered as having single values (homogeneous) within the domain. The first attempt to parameterise the material 
properties as a function of spatial variables was proposed in [6] where the authors tried to reconstruct the spatial-
dependent stiffness map of a plate with impact damage.  
  
In this paper, we retain the basic concepts underlying the VFM but approach the parameterisation of the material 
properties in the spatial frequency, rather than spatial, domain by performing a 2-D Fourier series expansion of the 
stiffness distribution over the region of interest. Furthermore, the virtual fields are not selected as polynomials of spatial 
variables as in the previous VFM literature, but from a set of simple cosine or sine functions of different spatial 
frequencies. The VFM with a Fourier series for the material property parameterisation and cosine/sine functions for the 
virtual fields will be denoted the F-VFM.  An example of the successful application of the F-VFM to the identification of an 
unknown stiffness distribution under known boundary conditions is summarised here; further details are given in [7].  

2. THEORETICAL 

2.1 Virtual Fields Method formulation 

For a thin 2-D sample made of an isotropic material, subject to known traction distributions around its boundary and 
negligible volume forces, the fundamental equation underlying the VFM may be written as follows [1,7]: 
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where S is the area of interest within the structure over which the experimental data are available;   is the part of the 
boundary of S on which tractions exist; t is the thickness of the sample; xxε and yyε are the normal strains as measured 

along the x- and y-axes of a Cartesian coordinate system, and ssε  is the engineering shear strain; (Tx, Ty) are the 

components of the traction vector defined over  ; and *
xu  and *

yu  are the components of the virtual displacement field 
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with *
xxε , *

yyε  and *
ssε  the corresponding virtual strain field components. The unknown stiffness distribution ),( yxQxx  is 

related to Young’s modulus and Poisson’s ratio ν (assumed here to be a constant) by ( )21/ ν−= EQxx .  
 
 
2.2 Fourier series expansion of stiffness distribution  

The stiffness distribution ),( yxQxx  in Eqn. (1) may be expanded as a 2-D Fourier series and written in matrix form as 
follows: 
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where the shorthand notation 
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sine functions with non-dimensional spatial frequency components (m, n), where m, n = 0,1,2,…,N. The column vector 
on the right hand side of Eqn. (2) is the sought solution vector, consisting of ( )21+N nma , coefficients associated with the 

cosine functions and ( ) 11 2 −+N nmb , coefficients associated with the sine functions. The total number of unknown 
Fourier coefficients in Eqn. (2), i.e. the number of degrees of freedom in the identification problem, is therefore 
 
 ( ) 112 2 −+= NNF  . (3) 
 
2.3 Selection of virtual fields in the F-VFM 

The natural choice for the virtual fields in the F-VFM is an arrangement of simple cosine and sine functions. Eqn. (1) 
involves area integrals of terms of the form xxQββααεε *  (α, β = x, y, s); the use of different spatial frequencies in the 

virtual fields therefore allows a given spatial frequency in the measured strain field ββε  to be linked in turn with different 

coefficients in the Fourier expansion of xxQ . No special optimised fields have been developed yet for the F-VFM, but a 
few simple rules have been used to select the virtual fields as follows: 
 

1.   The set of virtual field spatial frequencies should be the same as that for the modulus parameterization so that 
a given spatial frequency in the measured strain field ββε   can  be linked in turn with all the coefficients in the 
Fourier expansion of Qxx; 

2.    Each spatial frequency for a given virtual strain field component should have both a sine and cosine wave of 
unit amplitude to ensure that the signal in ββε at that spatial frequency is detected regardless of its phase;  

3.    The total number of virtual fields should be equal to NF in order to determine uniquely the unknown Fourier 
series coefficients of Eqn. (2).  

The approach taken here was therefore to define a set of fields with both *
xu and *

yu  chosen to produce the unit waves in 
*
xxε and *

yyε  simultaneously. Thus both the *
xxε and *

yyε  fields consist of a set of cosine waves (with spatial frequency 
components (p, q) where p, q = 0,1,…,N, giving (N+1)2 independent virtual fields), and a set of corresponding sine waves 
(in which the trivial case p = q = 0 is excluded, giving an additional (N+1)2 – 1 fields). The total number of chosen cosine 
and sine virtual fields will therefore be equal to NF, which is the required number to determine uniquely the unknown 
Fourier series coefficients of Eqn. (2). The required virtual shear strain field can be computed from the *

xu and *
yu fields 

defined in the above way. 
 
Substituting these virtual fields into Eqn. (1) results in the matrix equation 
 

YMX =                                                                          (4) 
 
where M is an FF NN × matrix whose elements are calculated from the experimental strain fields, X is the desired 1×FN

solution vector of Fourier coefficients, and Y is an 1×FN column vector calculated from the tractions. Eqn. (4) can be 
inverted by the MATLAB pinv function.  
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2.4 Fast Fourier VFM implementation 

When applying Eqn. (1) to experimental data, the measured strain fields xxε , yyε and ssε  are normally sampled on a 
regular grid and the integrals are replaced by summations. If the experimental strain fields have Nx×Ny pixels, then a 
single contributory term to one of the elements of M requires a minimum of NxNy addition plus multiplication operations. 
The computational effort to calculate M therefore scales as NF

2NxNy. For example, the application given in the next 
section, with Nx = Ny = 1000 and NF = 881 (N = 20), took approximately 5.5×103 s to set up the M matrix on an Intel® 
Core™ i7 CPU 2.79 GHz machine with 8GB of memory. 
 
A much more efficient algorithm can be implemented, however, using 2-D fast Fourier transforms. The fact that both the 
expansion of Qxx and the virtual fields are represented as sine and cosine functions means that the integrals can be 
expressed as 2-D Fourier coefficients of a linear combination of the experimental strain fields. It can be shown [7] that a 
total of only four 2-D Fast Fourier Transforms (FFTs) are required to assemble all the terms in M. The computational 
effort for each 2-D FFT is of order NxNy(log2(Nx) + log2(Ny)) operations, whereas that for assembling the elements of M 
from the resulting coefficients is of order NF

2~2N4 operations. The latter dominates over the former for problems involving 
relatively large numbers of Fourier coefficients in the reconstruction. In such cases, the computational effort becomes 
essentially independent of the resolution of the experimental strain fields, with a theoretical reduction in computational 
effort by a factor of NxNy by using the fast algorithm over the direct (i.e., element by element) method of assembling the 
matrix M.  
 
The computation time for the other steps in the algorithm, i.e. evaluation of the terms in the vector Y; the inversion of 
Eqn. (4); and reconstruction of the elastic stiffness distribution from the solution vector, is normally short compared to 
that for calculation of M. The reconstruction can be handled very efficiently by performing a single 2-D inverse Fourier 
transform on a 2-D array of complex numbers that is obtained directly from X. 
 
For the problem considered in the next section, the total calculation time for the stiffness identification using the fast 
algorithm when implemented as a MATLAB script, on an Intel® Core™ i7 CPU 2.79 GHz machine with 8GB of memory, 
was ~2.5 s and 250 s for problem sizes N = 20 and N = 80, respectively. This may be compared with values of 6.1×103 s 
and 3.7×106 s, respectively, for the direct method. A time saving of 3-4 orders of magnitude is therefore clearly 
achievable in practice. 

3. EXAMPLE APPLICATION 

In this section we give proof-of-principle results from the F-VFM method presented above with a complex stiffness 
distribution under uniform loading conditions. The input data to the F-VFM method were provided by a forward 
calculation from known stiffness distributions by the finite element method, thus providing a benchmark to compare the 
reconstructed stiffness maps against. The FE model used to generate the input strain fields consisted of a thin square 
plate of size Lx×Ly = 10×10 mm2 and of thickness t = 1 mm. The geometry was meshed in Mentat2010 using 1000×1000 
linear quadrilateral elements with full integration. Two vertical edges of the plate perpendicular to the x-axis were loaded 
with a uniformly distributed stress σxx = 1MPa pointing outwards. The origin of the coordinate system is at the centre of 
the plate (see Fig. 1). 
 
The material was chosen to be linear elastic isotropic with the reference elastic modulus distribution given by 
an ‘eggbox’ pattern of spatially varying stiffness distribution 
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and a constant Poisson’s ratio ν  = 0.3. Plane stress conditions are applicable in this case since the thickness of the 
plate is relatively small compared to the other dimensions. 
 
Some of the main results are shown in Fig. 2. Ripples in the recovered stiffness map are observed but can be largely 
removed by smoothing with a uniform square kernel of size equal to the pitch p (= 50 pixels) of the highest frequency 
fringes. The edge effect region of 25 pixels wide (half of the kernel window size) resulting from the convolution is masked 
out from the reconstructed stiffness as in Fig. 2(c). The residual in the error map (Fig. 2(d)) represents a difference of 
about 0.5% between the reference and recovered stiffness distributions. 

4. CONCLUSIONS 

The paper presents a development of the virtual fields method by implementing a novel parameterisation of the stiffness 
distribution with a full 2-D Fourier series expansion. An example stiffness distribution has been reconstructed after a 
single computation step without any iteration. A highly efficient numerical algorithm based on the fast Fourier Transform 
allows an identification problem with ~103 degrees of freedom to be solved in just a few seconds. The spatial resolution 
of the recovered stiffness by F-VFM is directly controllable through the choice of maximum spatial frequency. In this 
study the reconstructed modulus fields were obtained under the assumption that the traction distributions are known over 
the boundaries. In the future the F-VFM will be extended to cope with the cases where boundary conditions are 
unspecified over at least a part of the boundary of the domain of interest. Other important remaining issues are 
application of the method to experimental strain fields (as opposed to strain fields calculated by a forward finite element 
analysis), and extension to the case of anisotropic materials such as carbon-fibre reinforced composites. 
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Figure 1 – A square plate of ‘eggbox’ stiffness distribution subject to horizontal uniform stress σxx. 
 

 

Figure 2 – Recovery of the ‘eggbox’ stiffness distribution from Figure 1 by F-VFM with N = 20 (881 degrees of 
freedom, units: MPa). (a) Reference stiffness map (1000×1000 pixels); (b) Recovered stiffness map by F-VFM; (c) 

as (b) after smoothing by a 50×50 pixel kernel; (d) Error map. 
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