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Abstract—The unmanned aerial vehicle (UAV) technique pro-
vides a potential solution to scalable wireless edge networks.
This paper uses two UAVs, with accelerated motions and fixed
altitudes, to realize a wireless edge network, where one UAV
forwards downlink signals to user terminals (UTs) distributed
over an area while the other one collects uplink data. The
conditional average achievable rates, as well as their lower
bounds, of both the uplink and downlink transmission are
derived considering the active probability of UTs and the service
queues of two UAVs. In addition, a problem aiming to maximize
the energy efficiency of the whole system is formulated, which
takes into account communication related energy and propulsion
energy consumption. Then, we develop a novel multi-agent Q-
learning (MA-QL) algorithm to maximize the energy efficiency,
through optimizing the trajectory and transmit power of the
UAVs. Finally, simulation results are conducted to verify our
analysis and examine the impact of different parameters on the
downlink and uplink achievable rates, UAV energy consumption,
and system energy efficiency. It is demonstrated that the proposed
algorithm achieves much higher energy efficiency than other
benchmark schemes.

Index Terms—UAV swarm, energy efficiency, trajectory opti-
mization, multi-agent reinforcement learning, queue theory.

I. INTRODUCTION

Mobile devices and data traffic in edge networks will
grow exponentially over the next few years [1]. To meet
these demands and provide the holographic coverage for edge
networks, it is necessary to develop dynamic, scalable, and
self-organized networks. In the last decade, the technology
related to autonomous drones, also called Unmanned Aerial
Vehicles (UAVs), has been rapidly developed. With small size,
high mobility, and low communication overhead, UAVs have
emerged as a viable platform to operate in regions where
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the presence of onboard human pilots is either too risky or
unnecessary, from reconnaissance and surveillance tasks for
the military [2] to civilian uses such as precision agriculture
[3, 4] and logistics [5]. UAVs are also commonly regarded
as an effective technique for coverage enhancement in future
wireless networks. However, due to the physical limitations
of UAVs [6, 7] such as short battery life, it is difficult to rely
on a single UAV. Hence, in many applications, two or more
UAVs are required to cooperate with each other to complete
complex tasks [8].

A. Background Work

1) UAV Enabled Wireless Communications: UAVs have
been widely used in wireless communications. For example, an
analytical framework based on stochastic geometry tools was
developed in [9, 10] to evaluate the performance of a three-
dimension (3D) UAV network in the presence of interference,
which used the Binomial Point Process to model the spatial
distribution of the UAVs. In [11], radio interference was
analyzed using stochastic geometry theory and a grid-based
design of a primary exclusive region for spectrum sharing
in a 3D UAV network was presented. In [12–14], a tractable
stochastic analysis was employed to characterize the coverage
probability of air stations (i.e., UAVs). In [15], a multiple-
input multiple-output (MIMO) non-orthogonal multiple ac-
cess (NOMA) assisted UAV network was investigated, where
a stochastic geometry model was established for randomly
roaming NOMA users. In [16], a UAV enabled multi-user
communication system was studied, where UAV altitude and
antenna beamwidth were optimized jointly. Finally, a UAV-
enabled communication system was investigated in [17], where
a UAV was used to communicate with ground nodes in the
presence of multiple jammers.

2) Energy Efficiency of UAV Networks: The energy ef-
ficiency of UAV enabled wireless networks has been ad-
dressed in various works. In [18], a UAV-enabled wireless
communication system with energy harvesting has been in-
vestigated, where the total energy consumption of the UAV
was minimized while satisfying the minimal data transmission
requests of the users. In [19], the energy efficiency was
maximized by optimally planning the trajectory of the UAV
collecting sensor data from devices scattered around. In [20],
an analytical model on the propulsion energy consumption
of fixed-wing UAVs has been derived and the UAV’s energy
efficiency was maximized considering general constraints on
its trajectory. Furthermore, the downlink transmission for a
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multi-band heterogeneous UAV network was considered in
[21], where an efficient coverage radius for the UAVs and
an energy-efficient radio resource management scheme were
found. In [22], the energy efficiency of a UAV swarm-enabled
small cell network was maximized by exploiting the large-
scale channel state information at transmitters.

3) Reinforcement Learning (RL) Empowered UAV Net-
works: RL technique has been widely used in the field
of UAVs. In [23], an adaptive federated RL-based jamming
attack defense strategy was developed. In [24, 25], a deep
RL algorithm was used to compute the optimal trajectory. In
[26, 27], two different RL algorithms have been proposed to
control the transmit power and to manage interference. In [28],
a multi-agent algorithm was investigated to optimize UAVs’
sensing tasks and minimize the age of information. The multi-
agent RL algorithm in [29] achieved the maximal throughput
in a multi-agent downlink network by using predefined UAV
trajectory. An autonomous decision-making method for UAV
networks was developed in [30] based on deep belief network
and Q-learning techniques.

B. Motivation and Contributions
Energy related problems of UAVs have been studied in [18–

22, 31, 32], but only a single UAV was applied in [18–21] and
energy efficiency was investigated in [32] only for uplink sce-
narios. Besides, the acceleration energy consumption was not
considered in [22, 31]. In brief, the existing literature addresses
either the downlink [18, 33] or uplink [34, 35] transmission
of UAV-assisted wireless networks, but not both, and also
without a realistic energy consumption model. In order to fill
this gap, this paper studies a wireless communication system,
where the uplink and downlink links are jointly optimized for
energy efficiency considering communication related energy
and propulsion energy consumption. In the network under
study, user terminals (UTs) are served in parallel at the same
frequency band. Considering that a UAV working in the full
duplex mode for both the downlink and uplink transmission
will cause severe self-interference, we introduce two UAVs for
the downlink and uplink transmission, respectively. In order to
maximize the energy efficiency of the whole network, we pro-
pose a joint multi-agent Q-learning (MA-QL) algorithm that
simultaneously optimizes the trajectory and transmit power of
the UAVs. The contributions of this paper are listed as follows.

• We consider an edge network where two UAVs cooperate
with each other and take charge of downlink and uplink
transmission, respectively. Two main kinds of interference
are considered. In particular, one comes from the UTs
working in the transmission mode to the UTs in the
receiving mode and the other one is from the emitter UAV
to the receiving UTs. The conditional average achievable
rates, as well as their lower bounds, for both the uplink
and downlink transmission are derived.

• The queue theory is introduced to model downlink and
uplink service as two queues and the average hovering
time of the UAVs is obtained. Then, we formulate an
energy efficiency maximization problem which considers
communication related energy and propulsion energy
consumption.

Uplink

Downlink

B
U

A
U

Backhaul

Interference

Information 
sharing link

Fig. 1: A system model with two UAVs and a set of UTs.

• We develop a novel MA-QL algorithm to maximize the
energy efficiency of the whole network, using a dynamic
learning rate and an adaptive ϵ-greedy scheme. In the
proposed algorithm, the two UAVs cooperatively take
actions via sharing their state information. Simulation
results demonstrate that the proposed MA-QL algorithm
can achieve better energy efficiency than the zigzag
trajectory and random trajectory based approaches.

The rest of the paper is organized as follows. Section II
introduces the system model and Section III analyses the
downlink and uplink achievable rates. The energy efficiency
maximization problem is formulated in Section IV and the
MA-QL algorithm is proposed in Section V. The numerical
results are presented in Section VI. Finally, we conclude the
paper in Section VII.

II. SYSTEM MODEL

This paper considers an edge network with two single-
antenna UAVs and a set of single-antenna UTs, as shown
in Fig. 1. Since no direct communication links are available
between the macro base stations (MBSs) and UTs due to far
distances, the two UAVs, working as relays, travel between
the MBSs to help information transfer. Specifically, one UAV,
called UA, is responsible for downlink transmission while the
other UAV, called UB, is responsible for data collection from
the UTs in the uplink. UAVs UA and UB are assumed to
be elevated at fixed altitude HA and HB, respectively. The
UTs are geographically distributed in a certain destination area
Ω according to a homogeneous Poisson Point Process (PPP)
with spatial density λ. Given that the active probability of
each UT is PrAc, then the spatial density of the active UTs is
λ̃ = PrAcλ.

The two UAVs, UA and UB, have different footprints with
radii rA and rB, respectively. For UAV UA, the destination
area Ω can be approximately divided into KA = ||Ω||

πr2A
sub-

areas that each can be entirely covered by the footprint of
UAV UA, where ||Ω|| is the area size. The index set of the
sub-areas is denoted as KA = {1, 2, . . . ,KA}. Similarly, the
number of the sub-areas for UAV UB is approximately equal
to KB = ||Ω||

πr2B
and the index set of the sub-areas is denoted as

KB = {1, 2, . . . ,KB}.
Without loss of generality, we assume the two UAVs UA

and UB serve the UTs by covering the sub-areas one by one.
Once the two UAVs reach the next sub-area, they stop to hover
over the sub-area and start fulfilling requests from the UTs.
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A. Channel Model

The communication links between the UAVs and UTs can
be either line-of-sight (LoS) or non-LoS (NLoS) with different
probabilities of occurrences. The probability of having a LoS
link between UAV Ui, i ∈ {A,B} and UT u is formulated as
[29]

PrL(xi,u) =
1

1 + κ1 exp(−κ2 tan−1( Hi

xi,u
)− κ1)

, (1)

where κ1 and κ2 are two constants that depend on the
environment, and xi,u is the projection distance between UAV
Ui and UT u. Then, the probability of having a NLoS link is
PrN(xi,u) = 1 − PrL(xi,u). Denote the LoS and NLoS path
loss as PLL

i,u = d−αL

i,u and PLN
i,u = d−αN

i,u , respectively, where

di,u =
√
x2i,u +H2

i is the distance between UT u and Ui and
αL and αN are the path loss exponents for LOS and NLOS
links, respectively. Thus, the average path loss between UAV
Ui and UT u is expressed as

PLi,u = PrL(xi,u)PL
L
i,u + PrN(xi,u)PL

L
i,u. (2)

Besides, we assume the communication links between the UTs
are NLoS whereas the communication links between the UAVs
are LoS.

The Nakagami-m distribution is a universal model suitable
for various conditions, which can be used to model not only
the Rician fading in the LoS scenarios, but also the Rayleigh
fading in the NLoS scenarios [36]. Thus, here we assume
all transmission links experience independent Nakagami-m
distribution and the small-scale fading gain follows a Gamma
distribution Γ(x, y).

B. Downlink Transmission

We first consider the downlink transmission from UAV UA

to a typical UT u. Define PA and Pu as the transmit power of
UAV UA and UT u, respectively. Then, the received signal-
to-interference-plus-noise ratio (SINR) from UAV UA to UT
u is given as [37]

γA =
PAβ0hA,uPLA,u

δIntdl + σ2
, (3)

where hA,u ∼ Γ(ϕ1, 1/ϕ1) denotes the small-scale fading
gain, ϕ1 is the fading parameter, σ2 is the additive noise power,
β0 is the path loss at the reference distance d0 = 1m, and δ
is an indicator function defined as

δ =

{
1, if UA and UB are hovering at the same time,
0, else.

(4)
Note that when UA transmits downlink signals to UT u, the
active UTs that send their uplink signals at the same time will
cause inter-cell interference to UT u. We collect these active
UTs that send uplink signals into a set ΦB. Then, the inter-cell
interference Intdl from ΦB is given by

Intdl = Puguβ0d̄
−αN

u,ΦB
, (5)

where gu ∼ Γ(1, 1) is the small-scale fading gain and d̄u,ΦB

is the average distance between the typical UT u and the UTs
in ΦB, which is computed as

d̄u,ΦB =

∑
u′∈ΦB

du,u′

|ΦB|
, (6)

where du,u′ is the distance between the two UTs u and u′

and |ΦB| is the cardinality of ΦB. Then, the achievable rate is
given as RA = log2(1 + γA).

C. Uplink Transmission

Without loss of generality, we choose a typical UT u in ΦB

as an example and the received SINR of UT u at UAV UB is
given as

γB =
Puβ0hB,uPLB,u

δIntul + σ2
, (7)

where hB,u ∼ Γ(ϕ2, 1/ϕ2) denotes the small-scale fading
gain, ϕ2 is the fading parameter, and the inter-cell interference
Intul from UA is given as

Intul = PAgA,B|dA,B|−αL

, (8)

where gA,B ∼ Γ(ϕ3, 1/ϕ3) denotes the small-scale fading
gain, ϕ3 is the fading parameter, and dA,B is the distance
between UA and UB. Then, the achievable rate is given as
RB = log2(1 + γB).

D. Queue Model

The two UAVs serve their respective sub-areas one by one
and before entering a target sub-area, we assume that there
have been L0

i , i ∈ {A,B}, UTs waiting for service in the
target sub-area. During the hovering time on the target sub-
area, new service requests are generated from the UTs and we
model the new arrivals as a queue. The arrival rate follows
a Poisson distribution with parameter νi and the service time
follows an exponential distribution with parameter µi. Given
that the uplink/downlink transmission can be considered as a
finite M/M/1 queue with an initial length L0

i , the parameters
µi of the mean service time is computed as

µi =
R̄i

Q̄i
, (9)

where Q̄i is the amount of the approximate data requested
and R̄A = E[RA] and R̄B = E[RB] are the conditional
average downlink and uplink achievable rates, respectively, for
a typical UT, which are specified in the following section.

According to [38], the average hovering time for Ui is

tHov
i =

1

µi − νi
+
L0
i

µi
, i ∈ {A,B}. (10)

Moreover, the total length of the queue needs to be less than
the total number of the active UTs in the target area, i.e.,

νi
µi − νi

+ L0
i ≤ ρi, (11)

where ρi = λ̃πr2i , i ∈ {A,B}. Furthermore, we have νi < µi

in order to keep the two queues stable.
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III. PERFORMANCE ANALYSIS

In this section, we analyze the average achievable rates in
both the downlink and uplink transmission.

A. Downlink Achievable Rate

Theorem 1: Given the projection distance x between UA

and a typical UT u and dA =
√
x2 +H2

A, then the conditional
average downlink achievable rate of UT u served by UA can
be expressed as

R̄A =
2π

ln 2

∫ rA

0

∫ ∞

0

ΠN
A(χ, x)Pr

N +ΠL
A(χ, x)Pr

L

1 + χ
xdχdx,

(12)

where ξ = χ
PAβ0

,

ΠL
A(χ, x) =

ϕ1∑
j=1

(−1)j+1

(
ϕ1
j

)
e−ξdαL

A (σ2+δΨ1), (13)

ΠN
A(χ, x) = e−ξdαN

A (σ2+δΨ1), (14)

Ψ1 = Puβ0

[∫ 2π

0

∫ rA
0

Ξ(∆D̄, x, θ)xdxdθ

πr2A

]−αN

, (15)

Ξ(z1, z2, ϑ) = (z1
2 + z2

2 − 2z1z2 cosϑ)
1/2, (16)

and

∆D̄ =

∫ 2π

0

∫ rB
0

Ξ(dA,B, x
′, θ2)x

′dx′dθ2

πr2B
. (17)

Proof: See Appendix A.
Theorem 2: A tractable lower bound for the conditional

average achievable rate R̄A of the typical UT u served by UA

in the downlink can be computed as

R̄lb
A =

1

πr2A

∫ 2π

0

∫ rA

0

log2(1 + ∆A)xdxdθ, (18)

where ∆A is expressed as

∆A =
PAβ0

(
PrLd−αL

A + PrNd−αN

A

)
δPuβ0

[ ∫ 2π
0

∫ rA
0 Ξ(∆D̄,x,θ)xdxdθ

πr2A

]−αN

+ σ2

. (19)

Proof: See Appendix B.

B. Uplink Achievable Rate

Theorem 3: Given the projection distance x′ between UB

and a typical UT u′ and dB =
√
(x′)2 +H2

B, then the
conditional average uplink achievable rate of UT u′ served
by UB can be expressed as

R̄B =
2π

ln 2

∫ rB

0

∫ ∞

0

ΠL
B(χ, x

′)PrL +ΠN
B(χ, x

′)PrN

1 + χ
x′dχdx′,

(20)

where ξ̂ = χ
Puβ0

,

ΠL
B(χ, x

′) ≈
ϕ2∑
j=1

(−1)j+1

(
ϕ2
j

)
e−ξ̂dαL

B (σ2+δΨ2), (21)

and

ΠN
B(χ, x

′) = e−ξ̂χdαN

B (σ2+δΨ2), (22)

with Ψ2 = PAβ0d
−αL

A,B .
Proof: See Appendix C.

Theorem 4: A tractable lower bound for the conditional
average achievable rate R̄B of the typical UT u′ served by
UB in the uplink can be computed as

R̄lb
B =

1

πr2B

∫ 2π

0

∫ rB

0

log2(1 + ∆B)x
′dx′dθ2, (23)

with

∆B =

Puβ0

(
PrLd−αL

B + PrNd−αN

B

)
δPAβ0d

−αL

A,B + σ2
. (24)

Proof: See Appendix D.

IV. PROBLEM FORMULATION

In this section, we analyze the energy consumption of the
UAVs, which includes two main components, i.e., communi-
cation related energy and propulsion energy consumption. For
a rotary-wing UAV, its speed can be computed as

v(t) =
6D

t2
(τk,k+1 + τ2k,k+1), (25)

where τk,k+1 is the transition time from sub-area k to the
next, D is the space travelled, and the mechanical energy
consumption is given as

EMec
i (t) =

∑
k∈Ki\{Ki}

[∫ τk,k+1

0

PTotal(t)dt+ EKin
i

]
, (26)

where EKin
i is the change in kinetic energy and PTotal(t) =

PBP(t)+P IN(t)+PPD(t) [39]. Specifically, the blade profile
power PBP(t) = c1(1 + c2v

2(t)) is a unique term for rotary-
wing UAV [40], which is required to overcome the profile drag
due to the rotation of blades. The induced power, denoted as

P IN(t) = c3

√
1 +

ϖ2(t)

ψ2

(√
1 +

ϖ2(t)

ψ2
+
v4(t)

c24
− v

2(t)

c4

)1/2

,

(27)
is required to overcome the induced drag developed during
the creation of the lift force to maintain the aircraft airborne,
where ψ is the gravitational acceleration and ϖ(t) is the UAV
acceleration.

The parasite power PParasite = c5v
3(t) is the component

required to overcome the parasite friction drag due to the
movement of the aircraft in the air. EKin

i is the change in
kinetic energy, i.e.,

EKin
i =

1

2
M(|vi(τk,k+1)|2 − |vi(0)|2), (28)

where vi(0) and vi(τk,k+1) are the initial and final speeds
of Ui, respectively, when transiting from subarea k to subarea
k+1, and M is the mass of Ui. Moreover, ci ∈ [1, 2, ..., 5] are
the modelling parameters that depend on the UAV weight, air
density, and rotor disc area, as specified in [39]. In particular,



5

we can define c1 and c5 as parameters linked to the rotor
features and air density, c2 as the parameter related to the blade
angular velocity, while c4 is connected to the rotor velocity,
and c3 is the parameter taking into account the UAV weight.
Note that the UAV acceleration and speed functions have been
computed using an interpolation technique as in [41]. The
polynomial function used is cubic as we are in a system with
constant acceleration/deceleration. The parasite power exists
only when the UAV has a nonzero flying speed. Both the blade
profile power and the parasite power increase with the growth
of the aircraft speed v while the induced power decreases as
v increases.

The communication-related energy for the UAVs is com-
puted as [42]

ECom = THov
A PA + THov

B ρBPu, (29)

where THov
i = Kit

Hov
i is the total hovering time.

For the static speed v(t) → 0, the power consumption
corresponding to the hovering UAV at the fixed location is
asymptotically derived as

EHov
i = THov

i (c1 + c3). (30)

Define the energy efficiency of the whole system as

EE =

∑
i∈{A,B} ωiKiρiR̄i∑

i∈{A,B}E
Mec
i +

∑
i∈{A,B}E

Hov
i + ω̂ECom

, (31)

where ωi and ω̂ are weighting parameters. In this work, we
aim to maximize the energy efficiency of the whole system,
which is formulated as

P1 : max
Θ(t)

E [EE] (32)

s.t. C1 :PA ≤ PA,max, (33)
C2 :δ ∈ {0, 1}, (34)
C3 :v(t) ≤ Vmax, (35)

where Vmax is the maximum value of v(t), PA,max is the
transmit power budget of UA, and Θ is a triple denoted
as Θ = ⟨cA, cB, PA⟩, with cA and cB being the subarea
sequence of the trajectories of UA and UB. Problem P1 is
a complicated optimization problem, which cannot be solved
in polynomial time. RL is an efficient way to solve the model-
free and complex problems by taking appropriate actions to
maximize the reward in a certain environment, which sheds
lights on problem P1. In the following, we will present the
framework of the multi-agent RL method for solving the multi-
UAV cooperative resource allocation problem.

V. PROPOSED ALGORITHM

According to [43], we model the energy efficiency maxi-
mization problem in problem P1 as a Markov game, which
can be regarded as a multi-agent extension of the Markov
decision process. In the Markov game, the two UAVs, UA

and UB, are considered as two agents. The Markov game is
composed of a state space S, an action space A, and a reward
space Φ. To achieve better performance, we assume that the
two UAVs can interact with each other and exchange some
auxiliary information. However, only a few bits are allowed
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Fig. 2: The proposed MA-QL algorithm framework.

to be exchanged since there is no wired link available between
the UAVs.

Agent: We assume that the two agents, UA and UB,
exchange information regarding their current states, as shown
in Fig. 2. With the state information, the two agents take
actions according to their policies, i.e., πA and πB, and receive
their respective rewards, i.e., Φt

A and Φt
B.

State: Define the state space of agent Ui as Si ≜ (ki, γi),
where the first value represents the current position (i.e., sub-
area ki) of agent Ui and the second value represents the
achievable SINR value. Since γi is a continuous variable,
the number of possible states can be huge. To address this
challenge, we divide the value range [γi,min, γi,max] of γi
into Ni segments [γi,n, γi,n+1]

Ni−1
n=0 . Thus, the state space is

reduced to Si ≜ (ki, ni), where ni indicates that γi belongs
to the n-th segment i.e., γi ∈ [γi,n−1, γi,n].

Action: The action set AA ≜ (mA, PA) of UA contains the
movement and the transmit power actions, where mA repre-
sents the movement direction on a 2D surface as mA ∈M =
{0, 1, 2, 3, 4, 5, 6}, with the value 0 indicating the hovering
action at the same position, as shown in Fig. 3. Similar to γi,
the transmit power PA is also a continuous variable and thus
the value range [0, PA,max] of PA is divided into ZA segments
[PA,z, PA,z+1]

ZA−1
z=0 . Consequently, the action set of agent UA

is reduced to AA ≜ (mA, zA). Different from agent UA, the
action space of agent UB contains only the movement action,
i.e., AB ≜ (mB), because Pu is managed by the UTs.

Reward: The reward function of agent Ui at each iteration
t is defined as

Φi(ϱ
t
i) =

ρiR̄i[1 + (Kiρi −Gt
i)]

−1

EMec
i + EHov

i + ECom
, (36)

where ϱti = (sti, s
t
−i, a

t
i) with −i = {A,B}\{i} and Gt

i is the
number of users already served by agent Ui in the previous
iterations, which is computed as

Gt
i = ζti (L

0
i +

νi
µi − νi

), (37)

with ζti ≤ Ki as the number of sub-areas already covered
by Ui previously. The reward function in (36) enables three
objectives: maximizing the average achievable rate for the
downlink/uplink transmission, maximizing the coverage area
for the active UTs, and minimizing the energy consumption.
The term Kiρ

t
i−Gt

i in (36) can be considered as the effective
incremental coverage, which adds a penalty to the actual value.
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In summary, R̄i gives the gain while the denominator is the
cost in terms of energy consumption. The agents try to select
the actions such that the sum of the discounted rewards is
maximized in the future [44]. Maximizing the cumulative
reward is approximately equivalent to maximizing the energy
efficiency.

Probability of action selection: In a classic Q-learning
approach, the ϵ-greedy scheme is usually used to strike a
balance between exploration and exploitation such that the
agents reinforce the actions performed well in the past but
also explore new actions that might return higher rewards in
the future. Instead of using a static ϵ value, in this paper we
employ a dynamic ϵ, i.e.,

ati =

{
argmax

ai

Qi(ϱ
t
i), 1− ϵt,

random, ϵt,
(38)

where Qi(ϱ
t
i) is the Q-value in the Q-table of Ui and ϵt is the

probability of choosing a random action in iteration t, whose
update rule is

ϵt = ϵmax −
t/∆t∑
t=1

(ϵmax − ϵmin)∆t

T
, (39)

where ϵmin and ϵmax are the minimum and maximum values of
ϵ, respectively, ∆t is a constant interval, and T is the expected
number of training iterations. In (39), ϵ decreases every ∆t
iterations until reaching the minimum value ϵmin. This initial
setting ϵ(1) = ϵmax allows the agents first to explore the
environment and enrich the Q-tables. A smaller ϵ will lead to
the agents taking more efficient actions and achieving better
Q-values. For each action taken, the agents receive a reward
and new values are calculated for each state-action pair. The
algorithm uses an iterative updating and correction process
based on the new information, and the Q-tables are updated
simultaneously [45]. The Q-value update function for Ui is
computed as

Qi(ϱ
t
i)← (1− ηt)Qi(ϱ

t
i) + ηt[Φt+1

i + ς max
at+1
i ∈Ai

Qi(ϱ
t+1
i )],

(40)

where ς ∈ (0, 1] is a discount factor. An episode of the
algorithm ends when the state stB or stA is a final state or
a state of absorption. The final state is defined as the state in
which the agents have served all the users.

We aim to find an optimal policy π⋆ : Si → Ai for the
agents to maximize the expected long-term reward function
in the system. Accordingly, we define value function V π

i :
si → Φi that represents the expected value obtained by the
following policy πi of each state sti ∈ Si. The optimal action
at each state can be found through the optimal value function
expressed by

V ⋆
i (s

t
i) = max

at
i

{E[Φt+1
i + ςV ⋆

i (s
t+1
i )]}. (41)

Note that V ⋆
i (s

t
i) = maxat

i
{Qπ⋆

i (ϱti)} and Qπ⋆

i (ϱti) =

E[Φt+1
i + ςV ⋆

i (s
t+1
i )] is the optimal Q-function for all stateA-

stateB-actioni triplets.

1

2
3

6

5

4

0

Fig. 3: Action directions.

The proposed MA-QL algorithm is presented in Algorithm
1. In the proposed MA-QL algorithm, It will return as outputs
the trajectory and the list of the transmit power values used,
for each UAV. For each iteration, the algorithm updates the
dynamic parameters and the Q-tables, respectively. It can
be seen that in each iteration, the total iteration reward is
computed as the sum of each Φi

t, until both the UAVs reach
the final state.

In the proposed algorithm, an adaptive update rule of the
learning rate is given as

ηt =

[
ηmax +

t/∆t∑
t=1

(ηmax/ηmin)∆t

T

]−1

, ηmin ≤ η(t) ≤ ηmax,

(42)

where η decreases every ∆t iterations with the factor
(ηmax/ηmin)∆t

T . The discrete curve that is generated has a very
sharp initial inclination, which then decreases. The dynamic
learning rate speeds up the training process while guarantees
the convergence of the algorithm, as proved in [46]. Then the
dynamic learning rate allows us to initially consider most of
the episodes experienced previously to test different paths and
enrich the Q-table values. At last, as the training iterations
pass, it focuses on the last episodes experienced, defined by
the highest Q-values in the tables.

Algorithm 1 The proposed MA-QL algorithm.

1: Initialize the Q-table, τ , η(1), ϵ(1), si(0), i ∈ {A,B}, and
t = 1.

2: for each episode t do
3: if t mod ∆t = 0 then
4: Update ηt and ϵt according to (39) and (42),

respectively.
5: end if
6: if rand(•) < ϵ then
7: Randomly select action ati.
8: else
9: Select action ati = argmaxai Q

t
i.

10: end if
11: Execute action ati and observe the subsequent state sti.
12: Receive an immediate reward Φt

i and update Q-table
according to (40).

13: t = t+ 1.
14: end for

Computational Complexity: The complexity of the al-
gorithm has two main contributors, the Q-value updates of
agents UA and UB. Given the complexity of calculating the
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TABLE I. PARAMETER VALUES.

Parameters Values
mmWave bandwidth (BW) 3 GHz

Noise figure (Nf) 10 dB
Carrier frequency (fc) 1 GHz

Maximum of UA transmit power (PA,max) 46 dBm
Maximum of UT transmit power (Pu,max) 30 dBm

Urban environment parameters (κ1, κ2) 9.6, 0.28
UA,UB footprint radius (rA, rB) 90 m, 90 m

UA,UB altitude (HA, HB) 70 m, 80 m
UT density (λ) 250 UTs/km2

UT active probability (PrAc) 0.8

Path loss exponent (αL, αN) 2, 3 [47]
Discount factor (ς) 0.9

Maximum/minimum of learning rate
(αmax/αmin) 1, 0.1

Maximum/minimum of ϵ (ϵmax/ϵmin) 0.95, 0.4
Number of training iterations/episodes (T ) 250

Update interval (∆t) 10

Propulsion modelling parameters (ci)
c1 = 580.65 , c2 =
7.5e−5, c3 = 3, c4 = 2,
c5 = 7.3× 10−3 [39]

Q-value once is O
(
1
)

and the complexity of the Q-value
update in each iteration is O

(
|Si||Ai|

)
for agent Ui. More

specifically, the sizes of the state space and action space of
UA are |SA| = KANA and |AA| = |mA|ZA, respectively.
Similarly, the sizes of the state space and action space of
UB are |SB| = KBNB and AB = |mB|, respectively. There-
fore, the overall computational complexity can be denoted as
O
(
T (KANA|mA|ZA+KBNB|mB|)

)
, where T is the number

of all training iterations.

VI. SIMULATIONS RESULTS

In this section, we evaluate the performance of the proposed
algorithm with numerical results. We consider an area of 1
km2 and the horizontal locations of the UAVs are restricted
in the area. We assume that the noise power is σ2 = −174 +
10 log10 (BW) + Nf dBm, where BW is the bandwidth and
Nf is the noise figure. More parameters are listed in Table I.

Fig. 4 shows the results of the UAV hovering time with
respect to the requested data size and the UT density. The
solid curves are obtained from (10) and Monte Carlo results
are averaged over 5,000 independent trials, with rA = rB = 90
m, HA = HB = 80 m, λ = 250 UTs/km2, µ−1 = 0.5 s,
and PrAc = 0.8. Fig. 4(a) illustrates that the hovering time
increases as the requested bits of the UTs increase. We can also
observe that a larger arrival rate ν leads to higher hovering time
due to more service requests from the UTs. Fig. 4(b) shows
a rising tendency of the hovering time with the increasing
density. Notice that all our analytical results match very well
with those via Monte Carlo simulation.

A. Effects of Dynamic Parameters

Here we analyze the effects of the dynamic parameters on
processing time compared with other four baseline approaches:
1) one with fixed η and dynamic ϵ, 2) one with linearly
dynamic η and ϵ, 3) one with dynamic η and fixed ϵ, and
4) one with fixed η and ϵ.
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(a) UAV hovering time versus the requested data size.
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Fig. 4: UAV hovering time versus the requested data size and
the UT density.

Fig. 5 shows the algorithm processing time of the five
parameter pairs against the footprint radius r of the two
UAVs with r = rA = rB. All the dynamic parameters have
αmin = 0.1 and αmax = 1, ϵmin = 0.4 and ϵmax = 0.95.
Furthermore, the discount factor is fixed as γ = 0.9. Results
illustrate that the proposed approach significantly decreases
the algorithm processing time. Specifically, compared with
the static and the only-η dynamic approaches (green and
purple bars), the proposed approach decreases the time with
peaks of 70% less, while compared to the linearly dynamic
approach (orange bars) the time decrease reaches up to 25%,
and compared to the only-ϵ dynamic approach (red bars)
the time is slightly lower. More importantly, the minimum
processing time is obtained with rA = rB = 90 m for all
the approaches. At this value, it has reached the trade-off
between the computational time for the flying movement and
the computational time for interference. Indeed, the number
of sub-flights done by the UAVs from one group of the UTs
to another increases with a smaller radius, and statistically,
the number of times the UAVs serve simultaneously two
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Fig. 5: Training time against the footprint radius (r = rA =
rB) of the UAVs.

UT groups and thus generate interference increases with a
larger radius, hence increasing the computational time. For
this reason, rA = rB = 90 m will be used from here in the
simulations.

B. MA-QL Performance

Fig. 6 shows the performance of the proposed algorithm,
in terms of achievable rate, energy consumption, and energy
efficiency with respect to the transmit power PA and Pu.
According to the results in Fig. 6(a), we can observe that the
downlink achievable rate decreases while the uplink achievable
rate increases with the rise of Pu. The contrary is noticed
when PA increases. This is because the uplink surface growth
is due to the positive correlation between the uplink achievable
rate and Pu, while the downlink surface growth is due to the
positive correlation between the downlink achievable rate and
PA. The decrease of the surfaces is due to the increase of
uplink-downlink interference. Specifically, Intdl increases as
Pu increases and negatively affects the achievable rate in the
downlink, while Intul negatively affects the uplink achievable
rate as PA increases.

Fig. 6(b) demonstrates the results for the energy consump-
tion. The analytical surfaces are obtained from (26), (29),
and (30). Results illustrate that the transmit power does not
particularly affect energy consumption, which is mainly due to
flight and hovering consumption. An interesting phenomenon
is observed that UB consumes more energy than UA, even if
it does not have communication consumption. The behavior is
explainable by the uplink lower achievable rate, which extends
the hovering time in the UB service and makes it consume
more to hover and collect data.

Furthermore, Fig. 6(c) provides the results for the energy
efficiency in the UAV-enabled network. The analytical surfaces
are obtained from (31) using the only relevant variables of
the corresponding UAVs. The results illustrate a lower UB

energy efficiency, which also decreases the overall system
efficiency. More importantly, it is shown that the optimal

(a) Achievable rate.

(b) Energy consumption.

(c) Energy efficiency.

Fig. 6: The performance of the proposed MA-QL algorithm.

energy efficiency point is with maximum PA and minimum
Pu.

Fig. 7 demonstrates the influence of UA and UB altitude on
the overall system achievable rate. The solid curves have been
obtained by the sum of (18) and (23). The results illustrate
the constant decrease of the achievable rate as the altitude
increases. More importantly, it shows a higher influence of the
altitude variation of HA on the overall system achievable rate,
and a greater curve decrease can be noted. Finally, Fig. 8 gives
the holistic optimized trajectories of UA and UB, respectively.
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C. Performance Comparison

In this sub-section, we compare our algorithm with two
other approaches, i.e., a random action selection [48] and a
zigzag trajectory approach [49]. Fig. 9 provides the results for
the overall system results in terms of achievable rate, energy
consumption, and energy efficiency of the three approaches,
against multiple densities. The achievable rate curves in Fig.
9(a) are obtained by the sum of (18) and (23), the energy
consumption curves in 9(b), by the sum of (26), (29), and
(30), while the energy efficiency curves in Fig. 9(c), by (31).
Results in Fig. 9(a) illustrate that with any kind of UT density
the MA-QL algorithm and the zigzag approach overcome the
random approach. Results in Fig. 9(b) illustrate that the MA-
QL algorithm and the random approach with any kind of
UT density can save more than the zigzag approach. More
importantly, Fig. 9(c) demonstrates the superiority of energy
efficiency of the MA-QL algorithm compared to the cited
approaches, with the optimal point at λ = 50 UTs/km2. Finally,
Fig. 10 compares the trajectory. In all three cases, the UAVs
totally cover the UTs distributed on the ground. But it can be
easily noticed that the more confusing trajectory in Fig. 10(c)
does not allow to reach good levels of achievable rate and
the zigzag trajectory in Fig. 10(b) is energy-intensive due to
square direction changes.

VII. CONCLUSION

This paper considered an edge network where two UAVs
collaboratively provide service for uplink and downlink trans-
mission. The stochastic geometry theory and queue theory
tools have been introduced for performance analysis and the
exact and lower bound expressions for the average achievable
rate for downlink and uplink were derived. Then, aiming to
optimize the energy efficiency of the whole system, the MA-
QL algorithm was proposed with the improved parameters
including the learning rate and ϵ factor. Our analysis has shown
that the proposed MA-QL algorithm achieved much better
performance than the zigzag and random trajectory based
approaches.
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Fig. 8: Optimized trajectory using the proposed algorithm.

APPENDIX A: PROOF OF THEOREM 1

The conditional average downlink achievable rate of the
typical UT u served by UA is expressed as

R̄A =
2π

ln 2

∫ rA

0

∫ ∞

0

FγA
(χ, x)

1 + χ
xdχdx, (A.1)
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Fig. 9: Comparison of the proposed MA-QL algorithm, the
random trajectory based, and the zigzag trajectory based
approaches.
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where FγA
is the complementary cumulative distribution func-

tion (CCDF) of γA in (3) and is given by, according to [50],

FγA
= Pr

[
PAβ0hA,ud

−αL

A

δIntdl + σ2
> χ

]
︸ ︷︷ ︸

ΠL
A(χ,x)

PrL(x)

+ Pr

[
PAβ0hA,ud

−αN

A

δIntdl + σ2
> χ

]
︸ ︷︷ ︸

ΠN
A(χ,x)

PrN(x), (A.2)

where ΠL
A(χ, x) and ΠN

A(χ, x) are computed as (13) and (14),
respectively, and Ψ1 is obtained based on (5), i.e.,

Ψ1 = E{Puβ0gud̄
−αN

u,ΦB
} = Puβ0d̄

−αN

u,u′ . (A.3)

where d̄u,u′ is the average distance between the uplink typical
user u′ to the downlink typical user u, as shown in Fig. 11,
and is given by

d̄u,u′ =

∫ 2π

0

∫ rA
0

Ξ(dA,u′ , x, θ1)xdxdθ1

πr2A
, (A.4)

according to the cosine theorem in (16). Similarly, the average
distance dA,u′ between the downlink typical user u to the
centre o′ of a certain subarea k ∈ KB is computed. Finally,
the proof is completed by replacing dA,u′ with ∆D̄.

APPENDIX B: PROOF OF THEOREM 2

We first rewrite the projection distance x using the polar
coordinates. According to the Jensen’s inequality, the lower
bound for R̄A is computed as

R̄lb
A =

1

πr2A

∫ 2π

0

∫ rA

0

log2(1 +
1

E{γ−1
A (x, θ1)}

xdxdθ1.

(B.1)

Then E{γ−1
A (x, θ1)} can be computed as [50]

E{γ−1
A (x, θ1)} =

δΨ1 + σ2

PAd
−αL

A PrL + PAd
−αN

A PrN
. (B.2)

where Ψ1 is given in (A.3). Thus, we obtain (18) in Theorem
2 and complete the proof.

APPENDIX C: PROOF OF THEOREM 3

Similar to the proof of Theorem 1, the conditional average
uplink achievable rate for a typical user u′ served by UB is
expressed as

R̄B =
2π

ln 2

∫ rB

0

∫ ∞

0

FγB
(χ, x′)

1 + χ
x′dχdx′, (C.1)

where FγB
(χ, x′) is the CCDF of γB in (7) and is given by

FγB
(χ, x′) = Pr

[
Puβ0hB,ud

−αL

B (x′)

δIntul + σ2
> χ

]
︸ ︷︷ ︸

ΠL
B(χ,x′)

PrL(x′)

+ Pr

[
Puβ0hB,ud

−αN

B (x′)

δIntul + σ2
> χ

]
︸ ︷︷ ︸

ΠN
B(χ,x′)

PrN(x′), (C.2)

where ΠL
B and ΠN

B are given in (21) and (22), respectively.
Note that only the LoS link is between UA and UB and the av-
erage interference is obtained as E(Intul) = Ψ2 = PAβ0d

−αL

A,B .
Therefore, we obtain (20) in Theorem 3 and complete the
proof.

APPENDIX D: PROOF OF THEOREM 4

Using the Jensen inequality again, a tractable lower bound
for the conditional average uplink achievable rate R̄B is given
as

R̄lb
B =

1

πr2B

∫ 2π

0

∫ rB

0

log2(1 +
1

E{γ−1
B (x′, θ2)}

)x′dx′dθ2.

(D.1)

where x′ is the projection distance between an uplink typical
user u′ to the central of a ceratin sub-area and E{γ−1

B (x′, θ2)}
is calculated as

E{γ−1
B (x′, θ2)} =

δPAΨ2 + σ2

Puβ0

(
PrLd−αL

B + PrLd−αN

B

) . (D.2)

Hence, we obtain (23) and (24) in Theorem 4 and complete
the proof.
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