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Abstract To simultaneously satisfy the user needs and project-specific technical
requirements, it is imperative that complex engineering systems are designed us-
ing contemporary, systematic approaches. This study presents a framework that
combines Axiomatic Design and Fuzzy Analytic Hierarchy Process to ensure that
designers can concurrently satisfy the functional and non-functional requirements
along with the design constraints of conceptual system designs. A conceptual de-
sign case of an autonomous battery charging system for Unmanned Aerial Vehicles
is presented as an illustrative case study. The results showed that the approach can
aid decision-making processes by systematic evaluation and comparison of concep-
tual designs such that the selected solutions satisfy user needs whilst also realising
both functional and non-functional requirements of the system.

1 Introduction

Non-functional requirements (NFRs) are considered as a very important aspect of
engineering design. In order to have a good system design it is imperative that the
NFRs are well-structured [1]. The primary difference between an NFR and FR is
that FRs dictates what system needs to do, whereas, NFRs imposes constraints on
how the system should work. Typically, NFRs are not associated with quantitative
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measures and are difficult to analyse and are excluded from specifications [2, 3].
Although, in software engineering field, there are approaches that consider NFRs,
predominantly, the FRs are given more importance [4].

This article presents a design process framework based on the Axiomatic Design
(AD) to integrate NFRs into the mapping between the problem domain and the solu-
tion domain. AD, chiefly introduced by Nam P. Suh [5], offers a systematic approach
to guide system development projects by solely following the design axioms. One
of the important restrictions of AD is the absence of non-functional requirements
(NFRs) of the system (e.g. scalability, reliability, flexibility, readability, etc.) during
the conceptual design phase. To address this problem, AD’s design matrix is revis-
ited to include the mapping between a complete set of requirements (functional and
non-functional) and corresponding design parameters (physical domain). Moreover,
the Fuzzy Analytic Network Process (F-AHP) is used as a complementary approach
to AD to integrate both FRs and NFRs into the decision-making processes of the
conceptual design stage. The F-AHP complements the new design matrix and helps
identify the most suitable solution among design alternatives that satisfy design re-
quirements (DRs).

2 Axiomatic Design (AD)

AD is a systematic design methodology primarily proposed by Nam P. Suh of Mas-
sachusetts Institute of Technology (MIT) in the early 70s. AD is a generic approach
based on domain and design axioms. It allows decomposition of systems of any
scale into their constituent elements by mapping FRs to Design Parameters (DPs)
through the zigzagging process [0]. In the AD, there are two design axioms: inde-
pendence axiom and information axiom [7]. The independence axiom ensures that
FRs of a system are independent from each other (i.e. uncoupled, decoupled design),
whereas, the information axiom minimises the information content of a design. Ac-
cording to Suh [5], the information content of a design is strongly correlated with
the complexity of the design process itself, therefore, should be eliminated. Hence,
the design axioms in the AD primarily aim at eliminating the real complexity (i.e.
uncertainty) in the design process, thereby offering a robust design that can satisfy
all FRs while exist within the predefined design range [8]. Please note that they are
also useful in comparing alternative designs.

AD considers the design process within four interrelated domains: functional,
physical, customer, and process domains. The design artefact is represented in each
of these domains with a set of customer requirements (CRs), FRs, DPs and process
variables (PVs), respectively. These sets are represented in a hierarchy structured
depending on the abstraction levels of domain variables. As a whole, this domain-
hierarchy structure guides designers in following multiple two orthogonal thinking
directions, thereby leading to a systematic reasoning. AD is also characterised by
the zigzagging process, where different types of design elements across the adja-
cent domains can be mapped. The design matrix A that determines the location
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of the couplings between FRs and DPs is established. AD enforces that the inde-
pendence axiom should always be satisfied while generating the design matrix A.
The designs that maintain the independence axiom are called as good or acceptable
design. There are two types of good design; uncoupled and de-coupled designs,
whereas the coupled design is considered as bad design. The design pattern can be
readily extracted from the design matrix [A] in the equation FRs = [A] DPs.

FR A1 A ... Al | | DP
FRy Ax1 Ay ... Aoy | | DP

. . . . . . (1)
FRn Anl AnZ Anm DPm

If the matrix [A] is an orthogonal matrix, i.e. A;; = 0 for ij, the design is con-
sidered as an uncoupled design. If all the entries above the main diagonal of the
matrix [A] are zero, then the design is considered as a decoupled design. All other
design patterns for the matrix [A] are defined as a coupled design which requires
further improvements and modifications before proceeding through the zigzagging
process. To express what kind of relation the FRs and DPs have with each other,

symbols such as 0, X and C can be used to describe “no relationship”, “unidirec-
tional relationship” and “coupled relationship”, respectively.

3 Research Methodology

Both FRs and NFRs play an important role during the design stages of engineering
systems. NRFs help in achieving the reliability, availability and performance of the
system, and ensure that the system follows legal and compliance rules [9]. Although
the AD is a solid framework for the design process, it is considered as limited as it
does not give a full consideration to NFRs. This limitation has also been addressed
in [10]. In this section, we present an iterative design framework that includes the
non-functional behavioral design concerns into the engineering design process. The
approach integrates the F-AHP method into the AD process enabling the selection
of a solution that is more preferable from an existing set of solutions that have been
determined by AD. Figure 1 illustrates the schematic flow diagram of the proposed
approach.

3.1 Proposed extensions to AD

In this research, AD is extended to include the relationships between FRs, NFRs and
DPs with an aim to help in selecting the best design parameters from the physical
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Fig. 1 The flow-chart of the approach.
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domain. Here, NRFs are treated as an additional set of FRs that can translate CRs to
both DPs and PVs from physical and process domains, respectively (Figure 2).
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Fig. 2 Extended design domains of AD.
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NFRs impose constraints on how the system works, and address the general as-
pects of the system, e.g. performance, cost, security, maintainability, etc. The AD
process generally commences with collecting information pertaining to the system
or product that needs to be designed. This information, gathered from the customers
and stakeholders, is then mapped and expressed as functional and non-functional
requirements. However, this process of mapping the information is not within the
scope of the study. According to AD theory, DPs from the physical domain are
selected using the zigzagging methodology and functional requirements are decom-
posed from the higher level to lower levels. In the proposed model, the functional
requirements are bolstered with the non-functional requirements to support the se-
lection of design parameters from the physical domain. Here, it is assumed that each
NFR is defined with a maximum clarity at the lowest level of abstraction.

The design matrix in AD theory is extended to be a three-dimensional matrix
as shown in Figure 3. This three-dimensional design matrix is composed of pair-

Fig. 3 The three-dimensional design matrix.

wise domain mapping matrices. The inter-dependencies between FRs, NFRs and
DPs are represented by a modified design matrix (A*). The second block matrix, S,
is used visualise the dependencies between FRs and corresponding non-functional
performance constraints. Elements of this matrix are defined as follows.

S — X if i'" FR has a non-functional performance constraint j’h NFR,
Y00 otherwise.

The third design matrix, 7, is used to define the DPs that are required to satisfy
the given set of NFRs, and captures the inter-dependencies between physical and
non-functional design domains. Similarly, the elements of 7 matrix can be defined
as follows:
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X i i"" DP does satisfy the j"* NFR,
Y7 1o otherwise.

To fully define the relations between functional and physical domains, A and 7" ma-
trices are merged into a 2x1 block design matrix DM as follows:

[ FR1 ] (Al A . Ay
FR2 Axi Ay ... Aoy
S DP1
FR AnApn ... A DP2
veri | = PMIDPL=p s | | @)
NFR2 1 T ... Toy | | DP,
_NFRk_ _Tkl Tk2 Tkm_

According to AD, the original design matrix A should always satisfy the inde-
pendence axiom. In addition to this, the block matrix 7, should not have any null
rows; meaning that each NFR should be satisfied by at least one DP. The T matrices
with at least a null row are considered as a invalid solution. Invalid solutions require
further investigations and alterations.

3.2 Design selection via Fuzzy Analytic Hierarchy Process

The AD approach can be concluded with multiple design solutions. For such cases,
we need to use a decision-making method to choose the best design among many
alternative design solutions that can satisfy both FRs and NFRs. In the proposed
framework, Fuzzy Analytic Hierarchy Process (F-AHP) method is used to address
this problem. This method is chosen over AHP and ANP (see [11]) as it is better
suited to handle the fuzziness associated with the conceptual design phases. F-AHP
uses the concepts of fuzzy set theory and hierarchical structure analysis to deal with
complex multi-criteria decision-making problems [12].

The F-AHP is integrated with AD as seen in Figure 4 which provides an ex-
ample of the decision making hierarchy. In here, NFRs are considered as criteria
for decision-making, whereas, DPs are the parameters to be selected from a set of
alternative solutions (solj, sol,,...,sol,). A detail look on the step-by-step imple-
mentation of F-AHP can be found in [12]. In here, it is briefly explained within five
steps. In the first step, the performance scores of network elements are compared
within the same level of hierarchy. Linguistic terms are used to indicate the relative
strength of each pair of elements. The second step involves the construction of fuzzy
comparison matrices using fuzzy numbers. Accordingly, the fuzzy judgment matrix
B is constructed as given below:
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In the third step, the fuzzy eigenvalues are solved. A fuzzy eigenvalue, Aiisa fuzzy
number solution to B% = A%, where A, is the largest eigenvalue of B and B is a non-
zero n x 1 fuzzy vector containing fuzzy number X. To perform fuzzy multiplications
and additions by using the interval arithmetic and a-cut, the equation B = A% is
equivalent to:

[bt('){lx(lxh b?{uxllxu] D---D [bgzlxr(is?biofmxl(fu] = [)‘xiol(7xgl] (4)
B=1[b],& = (%1,...,%) )

and Ef‘j = [b?ﬂ,b%u],il‘-’; = [A%AZ] for 0 < a < 1 and all i, j, where i=1,2,...,n,
j=1,2....,n. The confidence of the decision-maker’s preference is a part of o-cut.
The index p is the index of optimism. A higher u indicates a higher degree of
optimism over the judgements. This index is a linear convex combination defined as:
b = ubf + (1 — )b, Vo € [0,1]. When « is fixed, the following matrix can be
obtained after setting the index of optimism, p, to estimate the degree of satisfaction:
b% b%, ... bl

B B . b

I ?1 ?2 2n ©)

Lo Lo o
b% b% ... b
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The eigenvector comprises of the priorities of the compared objects and is calcu-
lated by fixing the u value and identifying the maximal eigenvalue. The fourth step
involves the calculation of the consistency ratio (CR) for matrices and overall in-
consistency for the hierarchy. An estimation of the consistency of the pairwise com-
parisons is provided by the Consistency ratio as shown in equation below.
CR=CI/RI, c1="m="" )
n—1
where CI is the consistency index, R/ is a randomly generated consistency index,
and A,y is the largest eigenvalue of the n-order matrix. In ideal cases, CR should be
less than 0.10. Conclusively, the last step is the computation of the priority weight
of the considered alternatives. This is achieved by the multiplication of the matrix of
evaluation ratings by the vector of attribute weights and summing over all attributes.
From the obtained results, the solution with the highest score is presented to the
decision maker.

4 Case Study

In this section, the proposed approach is employed to automated battery charging
systems. An automated battery charging system is a ground service station for un-
manned aerial vehicles (UAVs) that replenishes vehicle batteries without any human
intervention. To simplify the design process, a total of four high-level FRs and NFRs
are selected as design requirements to be fulfilled.

¢ FRI1 Provide an identifiable landing,

* FR2 Charge UAV batteries,

* NFRI Convertibility - provide quick changeovers,
» NFR2 Portability - ease of transportation.

4.1 AD process

An AD process is carried out using two charging platform concept models (Figure
5) that are taken from [13]. The former design (Design A) consists of rectangular
wire mesh bands arranged in parallel on a flat rectangular mat and the latter de-
sign consists of hexagonal battery cells and operates independently of the helicopter
landing orientation. The charging terminals of Designs A and B are present on the
wire mesh and the hexagonal battery cells, respectively. Here, we only consider a
zigzagging process between physical and functional domains within two decompo-
sition levels. Please note that the proposed approach builds on top of the existing
study proposed in [13] by the novel addition of two NFRs to the already available
FRs in the AD process. FR1 requires a landing platform (DP1). The first functional
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Fig. 5 Schematic representations of the design options: @) Design A, b) Design B (This figure is
prepared using the information/pictures provided in [13].)

requirement (FR1.1) dictates that the platform dimensions should consider the di-
mensions of the UAV and the navigation system error during landing. Moreover,
the current position of the platform should be communicated to the navigation sys-
tem for allowing the successful landing of the UAV (FR1.2). In the Design A, it is
achieved through visual patterns that can be recognised by the UAV at a distance. On
the other hand, the Design B realises this FR through a direct wireless communica-
tion. To charge UAVs (FR2), the battery charging system requires a charging system
(DP2). To realise this, firstly, a safe interface between the electronics of the system
and the UAV must be established (FR2.1). In the first design, this is established via
physical terminals on both the platform and the UAYV, therefore, the landing position
of the UAV must be checked before the electrical transmission is made (FR2.2). The
first design satisfies this FR by a position identification system. In the second de-
sign, the platform control unit scans its constituent hexagon cells to identify which
ones are host to the UAV. In both designs, the charging process (FR2.3) is done via
an electronics system that can able to detect i) charge needs of the UAV, ii) status
of the charging process, and ii7) charging faults (DP2.3). NFR1 can be satisfied by a
modular structure. The second design is a modular/extendable system (DP3 for the
Design B): numerous helicopters can be charged simultaneously by adding more
cells and charger devices. Contrary to this, the design A has failed to satisfy this re-
quirement as it has a dedicated structure that does not allow any quick changeovers.
Hence, this design should be considered as invalid for given NFRs. NFR2 requires a
lightweight materials and/or compact structure that provides ease of transportation
and storage. The first design has a foldable lightweight mat (DP3 for the Design A)
that can be easily carried around. On the other hand, the second design provides a
compact structure (DP4 for the Design B) that can be easily stored and transported.
The AD design matrices DM for each solution are displayed in Figure 6. According
to the results, the design A exhibits couplings between platform and charging sys-
tem. This is due to the size of the terminals located on the mat naturally impact on
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the size of the mat. The design of B, on the other hand, achieves this by decoupling
these relationships through a modular approach.

s | 5| 5|5 B|E[8]5]8 vgns | 5| 5|5 |E[5]5|5|58)|5
w |[x[ofo[x]x]o]o]o w |[xJoJofofo]ofo[x]o
o || 0] x| o] x]x[o]o]o e |[0]x]o]ofo]o]o]o]0
e | 0]0[x]o]ofo]o]o e [0]o[x]ofo]o]o]o]0
w |[o]ofo]c]olo]o]o w || x[xJo]c]ofo]o]o]o
o || 0]0fo]o]x[o]x]o e || x[x[o]o[x]o]x]o]0
: |[0]o]o]o]o[x]o]o e |[0]o]olofo][x]o]o]o
s |[0]ofo]o]olo]x]o e [0]ofo]ofolo]x]o]0
we: |[o]o]o]ofo]o]o]o we |00 o]o]o]olo[x]o] s
wee || x [x]ololo]olo]x wee |[x [x[o]o]o]oo]o]x] T

Fig. 6 Design matrices of both design candidates (Sub-matrices A and 7' are marked as blue and
purple, respectively.).

4.2 Selection of the optimal design via F-AHP

Let’s assume that the concept models in the above example meet all FRs and the
AD’s independence axiom (i.e. de-coupled or uncoupled) in addition to fulfilling
a new set of NFRs with minimum acceptable performance. In addition to these,
the designer wants to compare the design solutions with respect to the degree to
which they can satisfy the given set of NFRs. The NFRs for this case are selected as
follows: NFR1 Affordability, NFR2 Maintainability, NFR3 Reliability, NFR4 Scal-
ability, NFRS Interoperability, NFR6 Security, and NFR7 Product weight. To do
this, the F-AHP method is used with the AD process. In here, we have assumed
two unique customer groups who want to achieve a suitable battery charging station
design for hobby and military applications respectively. Each group has different
preference with respect to NFRs.

The fuzzy comparison matrices of pairwise comparisons of NFRs for both cus-
tomer groups are defined using triangular fuzzy numbers (TFN) with membership
functions (as 1:(1,1,1), 3:(1,3,5), 5:(3,5,7), 7:(5,7,9), 9:(7,9,11)) and are given in
Table 1 and Table 2, respectively. Then, the fuzzy comparison matrices for design
alternatives with respect to each NFR are calculated. The normalised non-fuzzy rel-
ative weights of each alternative for each NFR are found and given in Table 3. CRs
for all matrices are found to be lower than 0.1. From Table 2, the results of the
F-AHP elicit that hobbysist prioritise affortability and product weight over other
NFRs. In case of military application, it can be seen that reliability, scalability and
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interoperability are prioritised. Consequently, it can be understood from Table 3
that for hobby applications, Design A is more suitable based on the customer pref-
erences, and in case of military applications, Design B is considered favourable.

Table 1 Fuzzy comparison matrix of NFRs with respect to the design selection using triangular
fuzzy numbers - Preferences for hobby use (o-cut=0.5, u=0.5).

NFR1 NFR2 NFR3 NFR4 NFR5 NFR6 NFR7 Priorities Rank

NFR1-Affordability 1 5 3 9 5 771170 02791 1
NFR2-Maintainability 5-! 1 -t 3 1 5 371 0.1236 4
NFR3-Reliability 371 q 1 3 3 9 371 0.1653 3
NFR4-Scalability -1 51 31 5-1 371 9=l 0.0245 7
NFR5-Interoperability 5-! 1-! 3-1 3 1 3 51 0.1021 5
NFR6-Security L e R | 371 9-1 0.0264 6
NFR7-Weight 1 3 3 9 5 9 1 0.2791 1

Amax 1.7581

CI  0.1263

CR  0.0936 < 0.1 is ok

Table 2 Fuzzy comparison matrix of NFRs with respect to the design selection using triangular
fuzzy numbers - Preferences for military use. (o¢-cut=0.5, u=0.5)

NFR1 NFR2 NFR3 NFR4 NFRS5 NFR6 NFR7 Priorities Rank

NFR1-Affordability 1 371571 31 770 97 771 0.0244 7
NFR2-Maintainability 3 1 37101 3191 571 0.0608 6
NFR3-Reliability 5 3 1 3 -0 -1 371 01292 3
NFR4-Scalability 3 -t 31 -1 51 5-1 00619 5
NFR5-Interoperability 7 3 -1 1 1 571 5101220 4
NFR6-Security 9 9 7 5 5 1 3 0.3534 1
NFR7-Weight 7 5 3 5 5 3711 0.2483 2

Amae 7.6669

cl 01116

CR  0.0827 < 0.1is ok

Table 3 The results of the F-AHP approach (a-cut=0.5, u=0.5).

Normalized non-fuzzy relative weights of Aggregated scores for each
solutions for each NFR solution with respect to:
NFR1 NFR2 NFR3 NFR4 NFR5 NFR6 NFR7 | Hobby Use Military Use
Design A 0.844 0.253 0.253 0.117 0.253 0.253 0.747 0.553 0.382

Design B 0.156 0.747 0.747 0.883 0.747 0.747 0.253 0.447 0.618
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5 Conclusion

This paper presents a design process framework that explicitly integrates NFRs into
the AD process using an extended form of the design matrix identifying the solutions
concerning NFRs. It also merged F-AHP method to support critical decision-making
activities by considering the impact of NFRs. As a next step, the proposed frame-
work will be improved by including a model for decomposition of NFRs during
the zigzagging process, and continued to be validated using a number of real-world
engineering design cases.
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