SUPPORTING INFORMATION DOCUMENT FOR MANUSCRIPT ENVPOL_2017_2538

HOW TALL BUILDINGS AFFECT TURBULENT AIR FLOWS AND POLLUTION DISPERSION WITHIN A NEIGHBOURHOOD

Elsa Aristodemou^{1,2}, Luz Maria Boganegra¹, Dimitrios Pavlidis², Laetitia Mottet², Achilleas Constantinou¹, Christopher Pain², Alan Robins³, and Helen ApSimon⁴

¹ School of Engineering, London South Bank University, London, UK.
² Department of Earth Sciences, Imperial College London, London, UK.
³ Department of Mechanical Engineering Sciences, University of Surrey, Surrey, UK
⁴ Department of Environmental Policy, Imperial College London, UK

Corresponding author: Elsa Aristodemou at: aristode@lsbu.ac.uk; e.aristodemou@imperial.ac.uk

S1 The measured (wind tunnel) mean velocity profile as represented in the computational simulations; (b) the measured (wind tunnel) Reynolds stresses as represented in the computational simulations.

Figure 2 (a) Case 1: The corresponding set-up in the FLUIDITY LES simulations for Case 1 - with one passive tracer source (red circle) on top of building A. The lateral traverses (detector lines) are shown in *blue* and their (*x*, *z*) coordinates are: L1=(0.119m, 0.176m); L2=(0.119, z=0.12); L3=(0.203m, 0.176m); L4=(0.203m, 0.065m); L5=(0.433m, 0.12m); L6=(0.433m, 0.176m); L7=(0.751m, 0.126m); L8=(0.751m, 0.184m); L9=(0.751m, 0.3m); L10=(1.244m, 0.073m). The corresponding computational set-ups for Cases 2 and 3 are shown in the supplementary material (S3).

S2b Location of some of the *x*-lines (plan view) along which the detectors used for comparison between the LES results and wind tunnel measurements were placed. The (*x*-*z*) coordinates for each line are: For L1 – (*x*=0.119m; *z*=0.176m); L3 – (*x*=0.203m; *z*=0.065m); L5 –(*x*=0.433m; *z*=0.12m); L7 – (*x*=0.751m; *z*=0.126m) *Note: Unit of distance along all axes: metres.*

S4 Velocity Field in Wireframe presentation: Horizontal plane (X-Y) view at Z=0.1508 m of the turbulent velocity fields for the three cases: (a) Case 1; (b) Case 2; (c) Case 3. *Note: Unit of distance along all axes: metres.*

S5 Velocity fields in Vector presentation: Horizontal Plane (X-Y) view at Z=0.1508 m of the turbulent velocity fields for the three cases: (a) Case 1; (b) Case 2; (c) Case 3. *Note: Unit of distance along all axes: metres.*

S6 Tracer Concentrations in Wireframe presentation: Horizontal plane (X-Y) view at Z=0.1508 m of Tracer dispersion with the Adaptive meshes for the three cases:(a) Case 1; (b) Case 2; (c) Case 3. *Note: Unit of distance along all axes: metres.*

-0.7 -0.65 -0.6 -0.55 -0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.5 X Axis

0.8 -0.75 -0.7 -0.65 -0.6 -0.55 -0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 X Axis

S7 Vertical plane (*x-z*) view through the centre of the domain (Y=0.0 m), showing the interesting Variations of the **Velocity fields** for the three cases: (a) Case 1; (b) Case 2; (c) Case 3. *Note: Unit of distance along all axes: metres.*

0.75 -0.7 -0.65 -0.6 -0.55 -0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 X Axis

S8 Vertical plane (*x-z*) view through the centre of the domain (Y=0), showing the interesting Variations of the **Velocity fields in Vector form** for the three cases: (a) Case 1; (b) Case 2; (c) Case 3. *Note: Unit of distance along all axes: metres.*

S9 Vertical plane (*y-z*) view through the centre of the domain (*x*=0), showing **the Velocity Variations** for the three cases: (a) Case 1; (b) Case 2; (c) Case 3. *Note: Unit of distance along all axes: metres.*

S10 Vertical plane (y-z) view through the centre of the domain (*x*=0.0m), showing the interesting Variations of the **Velocity fields in Vector** form for the three cases: (a) Case 1; (b) Case 2; (c) Case 3. *Note: Unit of distance along all axes: metres.*

S11 Vertical plane (*y-z*) view through the centre of the domain (*x*=0.0m) of the **Tracer Dispersion with the Adaptive meshes** for the three cases: (a) Case 1; (b) Case 2; (c) Case 3. *Note: Unit of distance along all axes: metres.*

S12 Velocity Streamlines for the three Cases highlighting the variations for the three building configurations.