SUPPORTING INFORMATION DOCUMENT FOR MANUSCRIPT ENVPOL_2017_2538

HOW TALL BUILDINGS AFFECT TURBULENT AIR FLOWS AND POLLUTION DISPERSION WITHIN A NEIGHBOURHOOD

Elsa Aristodemou ${ }^{1,2}$, Luz Maria Boganegra ${ }^{1}$, Dimitrios Pavlidis ${ }^{2}$, Laetitia Mottet ${ }^{2}$,

Achilleas Constantinou ${ }^{1}$, Christopher Pain ${ }^{2}$, Alan Robins ${ }^{3}$, and Helen ApSimon ${ }^{4}$

${ }^{1}$ School of Engineering, London South Bank University, London, UK.
${ }^{2}$ Department of Earth Sciences, Imperial College London, London, UK.
${ }^{3}$ Department of Mechanical Engineering Sciences, University of Surrey, Surrey, UK
${ }^{4}$ Department of Environmental Policy, Imperial College London, UK

Corresponding author: Elsa Aristodemou at: aristode@lsbu.ac.uk; e.aristodemou@imperial.ac.uk

S1 The measured (wind tunnel) mean velocity profile as represented in the computational simulations; (b) the measured (wind tunnel) Reynolds stresses as represented in the computational simulations.

Figure 2 (a) Case 1: The corresponding set-up in the FLUIDITY LES simulations for Case 1-with one passive tracer source (red circle) on top of building A. The lateral traverses (detector lines) are shown in blue and their (x, z) coordinates are: $\mathrm{L} 1=(0.119 \mathrm{~m}, 0.176 \mathrm{~m}) ; \mathrm{L} 2=(0.119, \mathrm{z}=0.12) ; \mathrm{L} 3=(0.203 \mathrm{~m}, 0.176 \mathrm{~m}) ; \mathrm{L} 4=(0.203 \mathrm{~m}, 0.065 \mathrm{~m}) ; \mathrm{L} 5=(0.433 \mathrm{~m}$, $0.12 \mathrm{~m}) ; \mathrm{L} 6=(0.433 \mathrm{~m}, 0.176 \mathrm{~m}) ; \mathrm{L} 7=(0.751 \mathrm{~m}, 0.126 \mathrm{~m}) ; \mathrm{L} 8=(0.751 \mathrm{~m}, 0.184 \mathrm{~m}) ; \mathrm{L} 9=(0.751 \mathrm{~m}, 0.3 \mathrm{~m}) ; \mathrm{L} 10=(1.244 \mathrm{~m}$, $0.073 \mathrm{~m})$. The corresponding computational set-ups for Cases 2 and 3 are shown in the supplementary material (S3).

S2b Location of some of the x-lines (plan view) along which the detectors used for comparison between the LES results and wind tunnel measurements were placed. The $(x-z)$ coordinates for each line are: For L1 - ($x=0.119 \mathrm{~m} ; ~ z=0.176 \mathrm{~m})$; L3 - $(x=0.203 \mathrm{~m} ; ~ z=0.065 \mathrm{~m})$; L5 $-(x=0.433 \mathrm{~m} ; ~ z=0.12 \mathrm{~m})$; L7 $(x=0.751 \mathrm{~m} ; z=0.126 \mathrm{~m})$ Note: Unit of distance along all axes: metres.

S3 Computational Domain for: (a) Case 2; and (b) Case 3. Note: Unit of distance along all axes: metres.

S4 Velocity Field in Wireframe presentation: Horizontal plane (X-Y) view at $\mathrm{Z}=0.1508 \mathrm{~m}$ of the turbulent velocity fields for the three cases: (a) Case 1; (b) Case 2; (c) Case 3.

Note: Unit of distance along all axes: metres.

S5 Velocity fields in Vector presentation: Horizontal Plane (X-Y) view at $\mathrm{Z}=0.1508 \mathrm{~m}$ of the turbulent velocity fields for the three cases: (a) Case 1; (b) Case 2; (c) Case 3.

Note: Unit of distance along all axes: metres.

S6 Tracer Concentrations in Wireframe presentation: Horizontal plane ($\mathrm{X}-\mathrm{Y}$) view at $\mathrm{Z}=0.1508 \mathrm{~m}$ of Tracer dispersion with the Adaptive meshes for the three cases:(a) Case 1; (b) Case 2; (c) Case 3. Note: Unit of distance along all axes: metres.

S7 Vertical plane $(x-z)$ view through the centre of the domain ($\mathrm{Y}=0.0 \mathrm{~m}$), showing the interesting
Variations of the Velocity fields for the three cases: (a) Case 1; (b) Case 2; (c) Case 3.
Note: Unit of distance along all axes: metres.

S8 Vertical plane $(x-z)$ view through the centre of the domain $(Y=0)$, showing the interesting Variations of the Velocity fields in Vector form for the three cases: (a) Case 1; (b) Case 2; (c) Case 3.

Note: Unit of distance along all axes: metres.

S9 Vertical plane $(y-z)$ view through the centre of the domain $(x=0)$, showing the Velocity Variations for the three cases: (a) Case 1; (b) Case 2; (c) Case 3.

Note: Unit of distance along all axes: metres.

S10 Vertical plane $(y-z)$ view through the centre of the domain $(x=0.0 \mathrm{~m})$, showing the interesting Variations of the Velocity fields in Vector form for the three cases: (a) Case 1; (b) Case 2; (c) Case 3.

Note: Unit of distance along all axes: metres.

S11 Vertical plane $(y-z)$ view through the centre of the domain $(x=0.0 \mathrm{~m})$ of the Tracer Dispersion with the Adaptive meshes for the three cases: (a) Case 1; (b) Case 2; (c) Case 3

Note: Unit of distance along all axes: metres

S12 Velocity Streamlines for the three Cases highlighting the variations for the three building configurations.

