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ABSTRACT
Altered electroencephalography (EEG) activity in schizotypal individuals is a powerful indicator of
proneness towards psychosis. This alteration is beyond decreased alpha power often measured in resting
state EEG. Multiscale fluctuation dispersion entropy (MFDE) measures the non-linear complexity of the
fluctuations of EEGs and is a more effective approach compared to the traditional linear power spectral
density (PSD) measures of EEG activity in patients with neurodegenerative disorders. In this study, we
applied MFDE to EEG signals to distinguish high schizotypy (HS) and low schizotypy (LS) individuals. The
study includes several trials from 29 participants psychometrically classified as HS (n=19) and LS (n=10).
After preprocessing, MFDE was computed in frontal, parietal, central, temporal and occipital regions for
each participant at multiple time scales. Statistical analysis and machine learning algorithms were used
to calculate the differences in MFDE measures between the HS and LS groups. Our findings revealed
significant differences in MFDE measures between LS and HS individuals in the delta frequency band
(at time scale 100 ms). HS individuals exhibited increased complexity and irregularity compared to LS
individuals in the delta frequency band particularly in the occipital region. Furthermore, the MFDE measures
resulted in high accuracy (96.55%) in discriminating between HS and LS individuals and outperformed the
models based on power spectrum, demonstrating the potential of MFDE as a neurophysiological marker for
schizotypy traits. The increased non-linear fluctuation in delta frequency band in the occipital region of HS
individuals implies the changes in cognitive functions, such as memory and attention, and has significant
potential as a biomarker for schizotypy and proneness towards psychosis.

INDEX TERMS Schizotypy, EEG, Nonlinear analysis, Complexity, Multiscale fluctuation dispersion
entropy.

I. INTRODUCTION

SCHIZOTYPY is a mild stage of psychosis consisting
of three dimensions, namely positive syndrome (para-

normal beliefs, delusional beliefs, hearing voices, magical
thinking and near-death experiences), negative syndrome (so-
cial and physical anhedonia) and disorganisation (illogical
thinking and speech, poor concentration and memory) [1]–
[4]. Disorganisation also consists of poor selective attention
and anxiety in social interaction [5]–[7]. These traits are
common in the general population [8], [9]. Schizotypy de-

notes psychosis-like experiences but remains latent in the
sub-clinical population [2]. Thus, studying schizotypy is
important for understanding the risk factors for subsequent
onset of schizophrenia (or other spectrum disorders).

Electroencephalography (EEG) is a non-invasive and in-
expensive neuroimaging technique and it provides reliable
indicators for proneness towards psychosis [10], [11]. Several
studies have identified altered resting-state EEG activity in
schizotypal individuals [11]–[15]. Fuggetta et al. [11] ob-
served higher alpha oscillation in the parieto-occipital brain

VOLUME 00, 0000 1



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

regions in HS individuals which may be related to abnormal
heightened attention. Frontal alpha asymmetry is another po-
tential biomarker of vulnerability for psychosis. Two studies
examined frontal EEG asymmetry in alpha [12], beta2 and
gamma frequency bands at rest [13]. Both studies reported a
reduction in left, relative to right, frontal asymmetry for HS
individuals. These findings align with the prevailing research
on decreased motivation and consciousness, and emotional
impairment in individuals with schizotypal traits [4], [16].
Additionally, Chen et al. [14] examined gamma frequency
power in the first-degree relatives of schizophrenia patients,
and they were assessed for schizotypal personality traits.
They found an inverse association between gamma frequency
band power in the mid-line brain region in resting-state
eyes-closed and eyes-open EEG and schizotypal personality
traits in the first-degree relatives, thus implicating diminished
gamma frequency power as an intermediate phenotype of
underlying genetic liability for schizophrenia.

While spectral power analysis techniques have revealed
alterations in brain EEG activity in schizotypy [12]–[15],
research rarely combines comprehensive EEG analysis and
machine learning techniques. For instance, we have observed
this gap in the research in our previous work [17]. This gap
was addressed by utilizing a directed transfer function, which
was obtained from multivariate autoregressive coefficients, to
assess effective brain connectivity within the same sample as
the present study. This approach successfully distinguished
between the HS and low schizotypy (LS) groups with an
accuracy of 89.21%. The study revealed that individuals
with HS had reduced brain connectivity between the parietal
and prefrontal lobes than those in LS in the beta frequency
band. It is worth noting that beta power is associated with
greater cognitive workload [18]. These findings suggest low
synchrony between regions and diffuse connectivity. Another
study [19] revealed that the alpha brain connectivity is de-
creased in the right frontoparietal region for the HS group,
and lower frontal alpha power implies more wakefulness and
consciousness [20]. They classified HS and LS groups with
74.3% accuracy based on brain connectivity in the alpha fre-
quency band. Thus, reduced connectivity between frontopari-
etal regions is consistently found in HS in several studies.
Jeong et al. [21] employed a shrinkage linear discriminant
algorithm to classify participants during an audiovisual emo-
tion perception task. Their classification algorithm attained a
zero false positive rate between the schizotypy and healthy
control groups, indicating high degree of accuracy in group
classification. Quite recently, Zandbagleh et al. [22] utilized
machine learning approaches to differentiate between the
HS and LS groups in the same sample as the present study
during an auditory oddball task. They achieved an accuracy
of 93.1% based on the P300 event-related potential (ERP)
subcomponents derived from tensor factorization.

Prior research has shown that nonlinear dynamics are not
only pivotal in adaptive cortical functioning and linked to
various brain disorders but also often considered more pow-
erful than linear methods [23], [24]. Complexity measures

have the capability to reveal complex neuronal processes
of the brain, which may not be possible using linear ap-
proaches [25]. To our knowledge, there is no paper studying
the effect of schizotypy on the complexity of brain activity
based on nonlinear dynamical analysis. Complexity refers
to the amount of irregularity or randomness observed in a
time series across different temporal scales and is computed
by evaluating the entropy of a signal at different scales or
resolutions [26]. Higher-level perceptions often arise from
the combined activity of numerous neurons within corti-
cal circuits and throughout the brain’s large-scale systems
[27]. By employing nonlinear dynamical methods rooted
in information theory, such as entropy, it is possible to
model the expansive brain activity and integrate data from
diverse experimental modalities into a unified framework.
Previous studies have demonstrated that collective, nonlinear
dynamics play a crucial role in adaptive cortical functioning
and area associated with various brain disorders [27], [28].
Consequently, entropy-based approaches have been utilized
to identify nonlinear dynamics in EEG data [29]. So far,
existing entropy techniques have mainly focused on measur-
ing signal irregularity at a single temporal scale, potentially
disregarding the presence of multiple inherent time-scales in
EEG recordings or complexity [26], [30], [31]. To this end,
we chose to apply a recently introduced complexity method,
multiscale fluctuation dispersion entropy (MFDE) [23]. The
MFDE technique is effective in assessing the complexity
of signal fluctuations since it estimates the entropy across
multiple scales [28], [29]. This measure can identify both
local (at lower scale factors) and global (at higher scale
factors) information within a time series [32], [33]. This
characteristic makes it particularly suitable for analyzing
signals of diverse domains, including biological [23], [34],
mechanical [35], and financial time series [36]. These signals
often exhibit intricate patterns, non-periodic fluctuations, and
interactions among various components, making their analy-
sis challenging using linear techniques. Given its capacity to
capture the intricate dynamics that underlie brain function,
this method has become an important tool for researchers
seeking to better understand the complex brain function [23],
[31].

This study aims to explore the complexity of brain activity
in various frequency bands in HS and LS groups for the
first time. The MFDE method is utilized to estimate the
complexity of EEG fluctuations. Then, several classifiers are
utilized to evaluate the efficacy of the proposed method in
detecting cases of HS.

Our objective is to demonstrate the potential of MFDE
as a non-linear measure compared to the commonly used
traditional measure known as power spectral density (PSD).
Besides using MFDE to classify HS and LS groups, for
exploratory purposes, we will calculate the correlation be-
tween Schizotypal Personality Questionnaire (SPQ) scores
and MFDE. We anticipate a strong correlation between this
nonlinear measure and SPQ scores, in comparison to the
PSD measure based on the literature reviewed above which
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typically reveals an association between diminished power
in different frequency bands and schizotypal traits [14]. The
main focus of this study is to answer two key questions: (a)
How do nonlinear features differentiate between groups with
HS and LS? (b) Which brain regions and frequency range
play a significant role in the relationship between nonlinear
measures of entropy and schizotypy?

Some EEG patterns associated with schizotypy traits may
overlap with those observed in clinical conditions, such
as schizophrenia or other psychiatric disorders [37], [38].
Distinguishing schizotypy-related EEG patterns from those
associated with other clinical conditions is very challenging.
On the other hand, late diagnosis or treatment of such psy-
chosis symptoms may lead to unfavorable outcomes [38].
The highlights of the proposed method for addressing the
aforementioned problems are summarized as follows:

1) The MFDE approach represents a novel method for
quantifying the complexity of signal fluctuations.

2) Significant differences in MFDE measures between
individuals with HS and LS are observed in the occipital
brain region, primarily at temporal scale 25, which is asso-
ciated with nonlinear EEG fluctuations related to the delta
frequency band.

3) The positive correlations between MFDE and schizo-
typal traits are stronger compared to those between relative
power and schizotypal traits.

4) This enhancement in MFDE could serve as a valuable
supplementary or alternative tool to the SPQ, particularly
during the initial risk of experiencing psychosis.

5) The machine learning results offer supporting evidence
for the efficacy of the proposed method utilizing a single
feature, thereby suggesting the potential consideration of
MFDE as a biomarker for schizotypy.

II. MATERIALS AND METHODS
A. PARTICIPANTS
In this work, we employed the same dataset used in our
previous study [17], [22]. A total of fifty participants were
screened (aged 18-48 years) from the general population in
Nottingham Trent University (NTU) based on their scores on
the SPQ [39]. This test is commonly used to identify indi-
viduals with LS and HS traits in the general population. HS
participants were defined as individuals who scored above 31
(out of 74) for their SPQ, whereas LS participants were those
who scored below 13 (out of 74) for their SPQ. Prior to data
collection, ethical approval was granted by the School of So-
cial Sciences Research Ethics Committee at NTU (approval
number 2017/232), and all participants provided informed
consent before participating in the experiment. The data were
collected during an emotional auditory odd-ball task [22],
and post-ERP recordings were used for subsequent analysis.
Specifically, we focused on the data obtained after the ERP
waveform had stabilized. This ensured that the variability in
the signals due to initial stimulus processing was minimized.

B. EEG DATA ACQUISITION AND PREPROCESSING
Continuous EEG signals were recorded using a BioSemi
Active-Two amplifier with 64 channels and a sampling rate
of 2048 Hz (Biosemi Inc., Amsterdam, Netherlands). EEG
data were preprocessed using the EEGLAB toolbox [40] to
remove the artifacts effectively. Following down-sampling of
the EEG data to 256 Hz, all channels were re-referenced to
the Cz electrode. Then, a zero-phase shift bandpass finite
impulse response (FIR) filter with cutoff frequencies of 1 and
30 Hz was implemented. Visual inspection was conducted
to detect and eliminate any artifactual time points, such as
those related to body-movement artifacts. To eliminate any
remaining ocular artifacts, independent component analysis
(ICA) was performed [41]. Following artifact rejection, we
selected four-second segments for each trial to be used in
subsequent analysis steps.

C. MULTISCALE FLUCTUATION-BASED DISPERSION
ENTROPY
The MFDE approach is based on the coarse-graining process
developed by Costa et al. [30] and the concept of fluctuation
dispersion entropy (FDispEn) introduced by Azami et al.
[33]. To clarify, let’s assume we have a univariate time series
of length L: a = a1, a2, ..., aL.

In the MFDE algorithm, we first divide the time series u
into non-overlapping segments of length τ , known as scale
factor. Then, the mean value of each segment is computed to
derive a coarse-grained data as follows [30]:

yj
(τ) =

1

τ

jτ∑
i=(j−1)τ+1

ai, 1 ≤ j ≤
⌊
L

τ

⌋
= N (1)

It is worth noting that at this step, other coarse-graining
processes can be employed [42]. However, in order to ensure
clarity, we consider the principal definition within this article.
Finally, the FDispEn of each coarse-grained time series yj(τ)

is computed.
Now, moving to the calculation of FDispEn for univariate

signal of length N : b = b1, b2, ..., bN , we proceed through
the following steps:

Step 1) Firstly, we map bj (j = 1, 2, ..., N) to c classes
with integer indices from 1 to c. In order to accomplish
this, we employ the normal cumulative distribution func-
tion (NCDF) to deal with issues related to assigning the
majority of bi to only a few classes, particularly when
the minimum/maximum values significantly differ from the
mean/median value of the data [33], [43], [44]. The NCDF
maps b into x = x1, x2, ..., xN from 0 to 1 as follows:

xj =
1

σ
√
2π

bj∫
−∞

e
−(t−µ)2

2σ2 dt, (2)

where µ and σ denote the mean and standard deviation of
time series b, respectively. Subsequently, we linearly assign
each xi to an integer from 1 to c using zcj = round(c · xj +
0.5), where zcj denotes the jth element of the classified time
series [33], [43], [44].
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Step 2) We define time series zm,c
i with respect to an

embedding dimension m− 1 and a time delay d according to
zm,c
i = {zci , zci+d, ..., z

c
i+(m−1)d}, i = 1, 2, ..., N − (m−1)d

[33], [43]. A fluctuation dispersion pattern πv0v1...vm−1 is
obtained by mapping each vector zm,c

i , where zci = v0,
zci+d = v1,..., zci+(m−1)d = vm−1. The number of potential
fluctuation-based dispersion patterns that can be assigned to
each time series zm,c

i is determined by (2c− 1)(m−1) [33].
Step 3) For each (2c− 1)m−1 possible dispersion patterns

πv0...vm−1, the relative frequency which is defined as:

p(πv0...vm−1 ) =
#{i

∣∣i ≤ N − (m− 1)d, zm,c
i has type πv0...vm−1 }

N − (m− 1)d
,

(3)

where # represents cardinality. Considering m as an em-
bedding dimension, p(πv0...vm−1

) denotes the number of
dispersion patterns of πv0...vm−1

that is assigned to zm,c
i ,

divided by the total number of embedded series.
Step 4) Finally, based on Shannon entropy, the FDispEn

value can be computed as follows:

FDispEn(b,m, c, d) = −
(2c−1)m−1∑

π=1

p(πv0...vm−1 ) · ln
(
p(πv0...vm−1 )

)
(4)

Notably, the mapping based on the NCDF used in the
computation of FDispEn [43] for the initial temporal scale
is consistently applied throughout all scales. Specifically, in
MFDE, the standard deviation (σ) and mean value (µ) of the
NCDF are set as the respective values of the principal data,
and they remain unchanged for all time scales. This process
resembles the maintenance of a constant value for r (usually
0.15 or 0.2 of the standard deviation of the principal time
series) in the MSE based approaches. [30].

D. OTHER MULTISCALE ENTROPIES
Multiscale sample entropy (MSE) is a popular and powerful
conditional entropy-based complexity metric based on sam-
ple entropy [26].

Multiscale dispersion entropy (MDE) is a novel com-
plexity measure for time series analysis that overcomes
some of the limitations of MSE, such as undefined val-
ues for short signals and slow computation time [32]. This
measure is based on dispersion entropy, which is a fast
and robust entropy estimation method [32]. Matlab code
for calculating MDE, MSE, and MFDE can be found at:
https://github.com/HamedAzami.

Another newly developed entropy method, known as di-
versity entropy (DivE) [45], utilizes statistical probabilities
of pattern similarities to depict the state distribution. This
involves utilizing the distribution of cosine similarities be-
tween neighboring orbits to monitor internal pattern changes,
consequently leading to more accurate complexity estima-
tion. Simultaneously, the novel DivE approach is expanded
into multiscale analysis, referred to as multiscale diversity
entropy (MDivE) [45]. This extension aims to provide a

comprehensive description of features by integrating it with
a coarse-graining process.

E. STATISTICAL ANALYSIS
Given the data’s normal distribution, a two-sample t-test
(p-value < 0.05) was used to evaluate the significance of
differences between the LS and HS groups. False discovery
rate (FDR) correction was also used to adjust for the effects
of multiple comparisons. To test for normality, a one-sample
Kolmogorov-Smirnov test is utilized [46].

F. MACHINE LEARNING APPROACH
1) Feature extraction and classification
Features including MSE, MDE, MDivE, and MFDE have
been extracted from each signal segment using a single scale
factor of 25 in the occipital brain region corresponding to
nonlinear EEG patterns in delta frequency band. Also, to
compare the classification performance of linear and nonlin-
ear features, PSD was used as a feature in the delta frequency
band and the occipital lobe. It is worth mentioning that
selection of the scale factor (frequency band) was based on
the importance of delta frequency band in schizotypy . The
occipital lobe is the region with the least effect of different
kinds of artifacts originated from muscles, eye movement
and blinking [47]. The results based on MFDE and power
spectrum in this brain region and frequency band also led to
most statistically significant differences between LS and HS.

To mitigate the impact of noisy segments, the median
value across all signal segments was calculated for each
subject. This median value was then used as a feature in
subsequent analysis steps. After extracting mentioned fea-
tures, three widely used classifiers, namely K-nearest neigh-
bor (KNN), linear discriminant analysis (LDA) and support
vector machines (SVMs), have been selected to differentiate
between the schizotypy groups. Additionally, two ensemble
classifiers (Bagged Trees and RUSBoost) were employed to
evaluate and enhance the classification performance. Bagged
Trees, also known as bootstrap aggregating, is an ensemble
learning method that involves constructing multiple decision
tree models using different bootstrapped samples from the
training data. Each model is trained on a slightly different
subset of the data, and the final prediction is obtained by
averaging the predictions of all the trees in the ensemble.
By combining the outputs of multiple models, Bagged Trees
can help to reduce overfitting and improve the overall accu-
racy and robustness of a classifier [48], [49]. The literature
highly recommends RUSBoost as a fast and effective hybrid
boosting classification algorithm for evaluating imbalanced
data [50]. This algorithm integrates two techniques, namely,
random under-sampling (RUS) and AdaBoostM1. This algo-
rithm performs resampling based on the weights of the sam-
ples in the training dataset. Specifically, RUS randomly re-
moves samples from the majority class until a desired balance
is achieved between the class distributions. Furthermore,
RUSBoost has been shown to outperform AdaBoostM1 [51],
a popular boosting algorithm that uses an ensemble method
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with decision trees as learners. This approach sequentially
trains the next learner model on samples that were misclassi-
fied by previous learners to improve classification accuracy.
This approach ensures that the algorithm focuses on difficult-
to-classify examples, which can significantly enhance the
overall performance of the model [51].

2) Performance evaluation
In this study, leave-one-out cross-validation (LOOCV) was
used to assess the performance of the classification model.
This method involves using data from N − 1 participants for
training and the remaining one for testing. By repeating this
process N times, with each participant’s data being held out
once for testing, LOOCV can provide a more accurate esti-
mate of the model’s overall performance. The performance
of the model was assessed using several measures, including
accuracy, sensitivity, specificity, and F1-score.

III. RESULTS
Figure 1 shows the mean and standard deviation of MFDE for
LS and HS individuals as a function of scale factor for each
brain region separately. It is worth mentioning that certain
scale factors, such as 4, 10, 18, and 25, have a specific
association with different frequency bands in EEG signals.
In particular, scales 4, 10, 18, and 25 correspond to the beta
(12–30 Hz), alpha (8–12 Hz), theta (4–8 Hz), and delta (1–
4 Hz) frequency bands, respectively. So, the violin plot of
MFDE for LS and HS individuals for the mentioned scale
factors for each brain region is shown in Figure 2.

Table 1 presents the statistical outcomes of MFDE for the
LS vs. HS individuals across various brain regions for the
specified scale factors. Significant group differences were
observed in all regions —frontal, central, parietal, temporal,
and occipital— at the same scale factor (25). Significant
differences were also observed in the parietal and occipital
regions in the scale factor 18 which corresponds to the alpha
frequency band. Finally, the occipital region at scale factor
25 (associated with the delta frequency band) stands out as
displaying the most pronounced differences between the two
schizotypy groups.

To demonstrate the superiority of our nonlinear approach
over the linear power spectrum method, we present the rela-
tive power for the occipital brain region with a focus on four
main canonical EEG frequency bands, including delta, theta,
alpha, and beta bands (Figure 3). The performance of the
proposed nonlinear approach (MFDE) has been compared
with other commonly used nonlinear approaches, including
MDE, MSE and MDivE. To facilitate this, Figure 4 illustrates
a comparison between the LS and HS individuals in the
occipital region at scale factor 25 for MFDE, MDE, MSE
and MDivE. In addition, Figure 4 includes a comparison
of the relative power in delta frequency bands between two
groups of schizotypy. Table 2 displays the statistical results of
the comparison between the LS and HS groups for MFDE,
MDE, MSE and MDivE of the occipital lobe at a scale
factor of 25, as well as the PSD of the occipital lobe in the

TABLE 1. Scale factor and statistical differences between the LS and HS
groups for MFDE in five brain regions. The most significant difference is
highlighted in bold. ES represents effect size. The symbol * denotes that the
FDR corrected p-value is less than 0.05.

Brain Region Scale factor (ES value) p-value (corrected) t-value
Frontal 4 (0.146) 0.702 -0.386

10 (0.288) 0.477 -0.759
18 (0.738) 0.138 1.943
25 (1.176) 0.021* 3.098

Central 4 (0.37) 0.397 -0.975
10 (0.571) 0.222 -1.505
18 (0.8) 0.111 2.106

25 (1.147) 0.021* 3.022
Temporal 4 (0.398) 0.378 -1.049

10 (0.541) 0.235 -1.427
18 (0.609) 0.218 1.604
25 (1.079) 0.028* 2.843

Parietal 4 (0.327) 0.439 -0.862
10 (0.621) 0.218 -1.637
18 (0.969) 0.047* 2.553
25 (1.499) 0.005* 3.949

Occipital 4 (0.459) 0.315 -1.21
10 (0.570) 0.222 -1.503
18 (1.322) 0.011* 3.483
25 (1.958) 0.0003* 5.158

TABLE 2. The statistical differences between the LS and HS groups for
MFDE, MDE, MSE, and MDivE of the brain occipital lobe signal at scale factor
25, as well its PSD in the delta frequency band. The most significant difference
is highlighted in bold. ES represents effect size. The symbol * denotes that the
FDR corrected p-value is less than 0.05.

Feature Scale factor (ES value) p-value (corrected) t-value
PSD Delta (0.822) 0.091 -2.167

MDivE 25 (0.322) 0.782 0.849
MSE 25 (1.14) 0.018* 3.004
MDE 25 (1.274) 0.015* 3.356

MFDE 25 (1.958) 0.0003* 5.158

delta frequency band. As shown in Table 2, MFDE in the
occipital brain region at scale factor 25 exhibits the most
significant differences between the two groups of schizotypy
(p = 0.0003, ES = 1.958). It is worth noting that among all the
nonlinear measures, there is no significant difference (with
the lowest ES) between the two schizotypy groups when
using MDivE. Therefore, we will exclude this measure from
the classification step.

A. SCHIZOTYPY CLASSIFICATION
To assess the proposed method and the reliability of lin-
ear and non-linear features for schizotypy classification, we
utilized the MFDE at scale 25 corresponding to nonlinear
fluctuation patterns in delta and the relative delta power
for all the 29 participants, consisting of 19 HS and 10 LS.
After testing was completed on all participants, the confusion
matrix was calculated based on the results. As previously
mentioned, one participant was reserved for use as a test
set, while the remaining 28 participants were included in the
training set. The results of the proposed method are shown in
Table 3, which presents various metrics used to evaluate the
method’s classification performance. These metrics include
accuracy, sensitivity, specificity, and F1-score. The results
indicate that the MFDE feature with a scale factor of 25,
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FIGURE 1. The mean and standard deviation of MFDE for the LS and HS individuals as a function of scale factor for each brain region. * represents the scale factor
with significant differences (p < 0.05) between the LS and HS individuals.

FIGURE 2. The violin plot of MFDE for LS and HS individuals using four scale factors (4, 10, 18, and 25) for each brain region. The violin plots in blue and red
correspond to LS and HS groups, respectively.
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FIGURE 3. The relative power for the occipital brain region with a focus on four canonical EEG frequency bands.

FIGURE 4. The violin plot of MFDE, MDE, MSE, MDivE and relative power for LS and HS individuals for the occipital region. All nonlinear analyses were conducted
at scale factor 25, and the relative power was measured in the delta frequency band.

which is related to the delta frequency band, in the occipital
lobe is highly effective in identifying individuals with high
schizotypal traits through classification performance. It is
evident that using just one feature, the RUSBoost classifier
correctly identified most of the participants (28 out of 29).

B. CORRELATION ANALYSIS

Figure 5 illustrates the correlation between MFDE at scale
factor 25 and several SPQ scores, namely total SPQ score and
the cognitive perceptual, interpersonal, and disorganization
subscales of the SPQ in the occipital brain region. As can

be observed, the correlations between the MFDE complexity
measure at scale 25 and schizotypal traits were stronger
compared to those between relative power and schizotypal
traits. From the correlation analysis results, it is evident that
the brain complexity correlated positively with all the SPQ
scores. Additionally, the highest correlation was observed be-
tween MFDE and SPQ disorganization scores. It is worth not-
ing that a higher total SPQ score indicates a greater likelihood
of having schizotypal personality traits. The Disorganization
subscale assesses disordered thinking, speech, and behavior,
including eccentricity, constricted affect, and odd speech pat-
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TABLE 3. The classification performance of various EEG features using different classifiers for the occipital lobe electrodes.

Feature Classifier Accuracy (%) Sensitivity(%) Specificity (%) F1-score
PSD KNN (K = 9) 68.96 78.94 50 0.76

LDA 62.06 78.94 30 0.73
Linear-SVM 62.06 78.94 30 0.73
Bagged Trees 72.41 78.94 60 0.78

RUSBoost 79.31 89.47 60 0.85
MSE KNN (K = 9) 68.96 73.68 60 0.75

LDA 68.96 78.94 50 0.76
Linear-SVM 75.86 78.94 70 0.81
Bagged Trees 72.41 68.42 80 0.76

RUSBoost 79.31 89.47 60 0.85
MDE KNN (K = 9) 68.96 78.94 50 0.76

LDA 72.41 84.21 50 0.8
Linear-SVM 68.96 78.94 50 0.76
Bagged Trees 79.31 78.94 80 0.83

RUSBoost 75.86 89.47 50 0.82
MFDE KNN (K = 9) 89.65 89.47 90 0.91

LDA 89.65 89.47 90 0.91
Linear-SVM 93.1 94.73 90 0.94
Bagged Trees 75.86 84.21 60 0.82

RUSBoost 96.55 100 90 0.97

terns [39]. The Cognitive-Perceptual subscale, which mea-
sures an individual’s tendency to experience unusual percep-
tions, thoughts, and beliefs, includes items related to magical
thinking, ideas of reference, perceptual aberrations, and odd
beliefs. The Interpersonal subscale measures an individual’s
ability to form and maintain close relationships, including the
degree of social anxiety, discomfort in social situations, and
lack of close friends.

C. COMPUTATIONAL TIME
This study was conducted on a Windows PC equipped with
a 2.50GHz Intel (R) Core (TM) i5-10300H processor and
16GB RAM by utilizing MATLAB 2019a. We set the embed-
ding dimension (m = 2), the number of classes (c = 6), and
the time lag (tau = 1) for both MFDE and MDE [23], [44].
Additionally, we employed m = 2 and r = 0.2 times the
standard deviation of the signal for the calculation of MSE
[52]. For MDivE, we set m = 2 and intervals (e = 10)
[45]. To assess the computational time of both the complex-
ity methods, a single four-second segment containing 1024
samples was used. The computational times are as follows:
MFDE : 0.011 ms; MDE : 0.011 ms; MSE : 0.013 ms; and
MDivE : 0.014 ms, demonstrating that all the complexity
approaches exhibit efficient computational speed.

IV. DISCUSSION
Schizotypy represents an important vulnerability-state in
healthcare systems worldwide as it serves as a potential
precursor to various mental disorders [53]. It has been re-
ported that 75% of the British population has had one or
more paranormal experiences [9]. Six percent of Australian
adolescents aged 11 to 12 years old have high levels of
the core schizotypal traits, namely cognitive disorganization,
impulsive non-conformity, introversion, and self-other distur-
bance [8]. It has been found to be ten times more prevalent in
families of individuals with schizophrenia compared to those

with depression [37]. Early identification of these tendencies
through schizotypy diagnosis can facilitate prompt preventive
intervention of emerging mental disorders [54]. Conversely,
delayed diagnosis and treatment of psychosis-like symp-
toms are associated with worse outcomes in patients with
psychosis [38]. Advances in signal processing and machine
learning technologies present promising opportunities for the
early detection and efficient monitoring of such disorders.
Considering the convergence of empirical and computational
advances, it is essential to study the brain complexity of
this personality trait to improve its diagnosis and treatment
efficiency.

To the best of our knowledge, this is the first time a study
investigates the relationship between MFDE as a fluctuation-
based complexity metric and the level of schizotypy. Our
results indicated that brain electrical activity in the occipital
lobe of individuals with HS, as measured by the MFDE at
scale factor 25 (related to the delta frequency band; scale
factor τ corresponds to fs/(2*τ ) [42]), exhibits the most
significant differences when compared to those with LS.
Although there are no group differences when employing
MDivE as a nonlinear method, the other nonlinear measures
of EEG dynamics in the occipital lobe, i.e. MSE and MDE,
yielded analogous results when using the same scale factor as
MFDE and demonstrate significant differences between the
two groups.

Our results showed that the entropy and the relative power
of HS participants’ EEGs are higher than those of LS par-
ticipants in the delta frequency band. Dimitriadis et al. [55]
found that an increase in delta band power was associated
with an improved performance of mental calculation tasks,
suggesting that this frequency range may play a main role in
cognitive processes. Specifically, delta band activity reflects
the engagement of attentional resources necessary for solving
complex cognitive tasks. Overall, delta frequency appears to
play an crucial role in regulating various aspects of cogni-
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FIGURE 5. Correlation between both MFDE (with a scale factor of 25) and relative power in the delta frequency band, and several SPQ scores including total SPQ
score, cognitive perceptual, interpersonal, and disorganisation in the occipital brain region. ρ = Spearman’s rho.

tive functioning, particularly those related to attention and
memory [56]. Furthermore, our findings are consistent with
the studies of schizophrenia suggesting an increase in low-
frequency power specifically at delta and theta frequencies as
observed through EEG analysis [57]–[60]. On the other hand,
studies conducted using EEG on both schizophrenia patients
and their relatives [58], [61] have revealed higher levels of
low-frequency power exclusively in patients. This implies
that increased power in the low-frequency range, such as
delta frequency, may be linked to psychotic symptoms [57].
In other words, these results could indicate the effect of
schizotypal traits, not its cause. Thus, further investigation is
required to elucidate how these modifications may heighten
vulnerability for psychosis.

Previous research has suggested that the occipital region
plays a main role in a certain cognitive processes, including
visual processing and attentional control, which may be
disrupted in individuals with schizotypal traits [62]. Apart
from that, this region plays a vital role in examining the dis-
connection hypothesis in individuals with schizotypal traits.
Hu et al. [15] demonstrated that the positive schizotypy group
exhibited smaller regional differences in the strength of alpha
connectivity compared to the control group. This diffuse
pattern was observed between frontal and occipital regions
as well as between central and occipital regions. This effect
suggests a more widespread pattern of connectivity in the
positive schizotypy group, indicating a reduction in local
computational processing or a lack of synchrony between
brain regions. On the other hand, individuals with higher
levels of negative schizotypy showed a greater difference
between the occipital region and other regions in terms of the

number of significant connections arising from each node, as
compared to the control group. This observed effect implies
an inhibition of information flow from the occipital region in
individuals with negative schizotypy.

Recent research suggests that MFDE holds promise as a
valuable tool for neurological conditions like Alzheimer’s
disease (AD) and this method has potential to assess neurode-
generative diseases [23], [24] besides schizotypal traits. The
potential of EEG entropy during resting-state EEG and Rapid
Eye Movement (REM) sleep to distinguish subjects with AD
and healthy controls was evaluated [23], [24]. The findings
revealed significant differences in EEG entropy based on
MFDE during resting-state and REM sleep between individ-
uals with AD and healthy controls. Thus, it is plausible to
hypothesize that alterations in MFDE may be associated with
schizotypy due to such cognitive alterations in learning and
memory arising from disorganisation.

The correlation analysis between MFDE and certain
schizotypy scores further demonstrated its superiority over
the PSD-based approach. The results related to MFDE in the
delta frequency band exhibited a significant and positive cor-
relation with all schizotypal traits. This greater delta activity
denoting aspects of cognitive functioning, namely attention
and memory, may complement the disrupted concentration
characterized by disorganization. Furthermore, the relative
power of the delta frequency band did not exhibit such a sig-
nificant correlation. This finding suggests that MFDE may be
a more powerful tool for evaluating the relationship between
the nonlinear patterns of EEG and schizotypy scores than
the popular relative PSD-based metrics. All the classifiers
achieved high levels of accuracy in evaluating schizotypy
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using only one feature, indicating that the MFDE is a highly
informative and powerful metric for this purpose. Overall, the
results suggest that the MFDE of EEG may have a potential
to be considered as a biomarker for assessing schizotypy.

V. LIMITATIONS OF THE STUDY
In spite of the interesting findings based on MFDE to ex-
tract meaningful nonlinear features of EEG (having a high
classification accuracy and significant correlation with SPQ
scores), the analysis was based on a small sample. The em-
pirical evidence underscores the pivotal role of convolutional
neural networks (CNN) in EEG analysis [63]. Hence, in
instances where the sampling size is sufficiently substantial,
it is recommended to integrate a diverse array of features
encompassing both linear and nonlinear elements, along-
side metrics for brain connectivity. Employing this approach
holds the potential to create engender the creation of a robust
diagnostic tool for the early identification of this particular
personality trait. Therefore, future studies should examine
a larger number of participants. Additionally, it is recom-
mended that future studies aim for more balanced data in
terms of factors such as sex, age, and group sample sizes
to ensure that the results accurately and robustly reflect the
broader population. Also, future studies may gain advantages
by including other significant demographic factors, such as
diverse ethnic, as these factors could enhance the system’s
reliability and robustness for clinical diagnosis and possibly
for use in some advanced denoising algorithms, such as mul-
tiscale principal component analysis (MSPCA) [64]–[66],
known to yield valuable and robust outcomes in certain EEG
studies. This can be achieved by employing larger and more
diverse cohort datasets, ultimately leading to improved ac-
curacy and robustness. Graphical features play a substantial
role in enhancing the interpretability and readability of EEG
signals [67]. Therefore, we are adopting graphical features as
our research direction to further enhance the interpretability
of results.

VI. CONCLUSIONS
This study is the first attempt to use MFDE, a measure
of nonlinear complexity, to characterize EEG fluctuations
in schizotypy. We found significant differences in MFDE
values between the LS and HS groups at scale factor 25
(time scale 100 ms), which corresponds to the nonlinear EEG
fluctuations associated with the delta frequency band. The HS
individuals exhibited increased complexity, particularly in
the occipital region. Moreover, machine learning techniques
provided evidence to support this claim. These features led
to a high classification accuracy (96.55%) in discriminating
the HS from LS groups. Overall, these findings suggest that
MFDE has the potential to be a valuable tool for researchers
investigating the neural basis of complex psychological con-
structs in schizotypy. However, further research on a larger
schizotypal sample is needed to better understand the prop-
erties of the MFDE in the delta frequency band before it

can be considered as a biomarker of schizophrenia given the
predictive status of schizotypy towards schizophrenia.

REFERENCES
[1] T. R. Kwapil, K. C. Kemp, A. Mielock, S. H. Sperry, C. A. Chun, G. M.

Gross, and N. Barrantes-Vidal, “Association of multidimensional schizo-
typy with psychotic-like experiences, affect, and social functioning in
daily life: Comparable findings across samples and schizotypy measures.,”
Journal of Abnormal Psychology, vol. 129, no. 5, 2020. Art. no. 492.

[2] E. Fonseca-Pedrero, M. Debbané, J. Ortuño-Sierra, R. Chan, D. Cicero,
L. Zhang, C. Brenner, E. Barkus, R. Linscott, T. Kwapil, et al., “The
structure of schizotypal personality traits: a cross-national study,” Psycho-
logical Medicine, vol. 48, no. 3, pp. 451–462, 2018.

[3] K. Schofield and G. Claridge, “Paranormal experiences and mental health:
Schizotypy as an underlying factor,” Personality and Individual Differ-
ences, vol. 43, no. 7, pp. 1908–1916, 2007.

[4] T. R. Kwapil and N. Barrantes-Vidal, “Schizotypy: looking back and
moving forward,” Schizophrenia Bulletin, vol. 41, no. Suppl_2, pp. S366–
S373, 2015.

[5] N. Barrantes-Vidal, C. A. Chun, I. Myin-Germeys, and T. R. Kwapil,
“Psychometric schizotypy predicts psychotic-like, paranoid, and negative
symptoms in daily life.,” Journal of Abnormal Psychology, vol. 122, no. 4,
2013. Art. no. 1077.

[6] P. Premkumar and V. Kumari, “Rejection sensitivity and its relationship to
schizotypy and aggression: current status and future directions,” Current
Opinion in Behavioral Sciences, vol. 44, 2022. Art. no. 101110.

[7] O. Mason, G. Claridge, and M. Jackson, “New scales for the assessment of
schizotypy,” Personality and Individual Differences, vol. 18, no. 1, pp. 7–
13, 1995.

[8] M. J. Green, K. O’Hare, K. R. Laurens, S. Tzoumakis, K. Dean, J. C.
Badcock, F. Harris, R. J. Linscott, and V. J. Carr, “Developmental profiles
of schizotypy in the general population: a record linkage study of aus-
tralian children aged 11–12 years,” British Journal of Clinical Psychology,
vol. 61, no. 3, pp. 836–858, 2022.

[9] R. Pechey and P. Halligan, “Prevalence and correlates of anomalous ex-
periences in a large non-clinical sample,” Psychology and Psychotherapy:
Theory, Research and Practice, vol. 85, no. 2, pp. 150–162, 2012.

[10] S. Sanei and J. A. Chambers, EEG Signal Processing and Machine
Learning. John Wiley & Sons, 2021.

[11] G. Fuggetta, M. A. Bennett, P. A. Duke, and A. M. Young, “Quantitative
electroencephalography as a biomarker for proneness toward developing
psychosis,” Schizophrenia Research, vol. 153, no. 1-3, pp. 68–77, 2014.

[12] T. P. Le, H. D. Lucas, E. K. Schwartz, K. R. Mitchell, and A. S. Cohen,
“Frontal alpha asymmetry in schizotypy: electrophysiological evidence
for motivational dysfunction,” Cognitive Neuropsychiatry, vol. 25, no. 5,
pp. 371–386, 2020.

[13] X. y. Yu, K. r. Liao, Z. k. Niu, K. Wang, E. F. Cheung, X. l. Li, and R. C.
Chan, “Resting frontal EEG asymmetry and schizotypal traits: a test-retest
study,” Cognitive Neuropsychiatry, vol. 25, no. 5, pp. 333–347, 2020.

[14] C. Chen, W. Huang, X. Chen, X. Shi, X. Zhu, W. Ma, Y. Wang, Q. Kang,
X. Wang, M. Guan, et al., “The relationship between resting electroen-
cephalogram oscillatory abnormalities and schizotypal personality traits in
the first-degree relatives of schizophrenia patients,” Neuroreport, vol. 30,
no. 17, pp. 1215–1221, 2019.

[15] D. K. Hu, L. Y. Li, B. A. Lopour, and E. A. Martin, “Schizotypy
dimensions are associated with altered resting state alpha connectivity,”
International Journal of Psychophysiology, vol. 155, pp. 175–183, 2020.

[16] A. S. Cohen, D. A. Callaway, G. M. Najolia, J. T. Larsen, and G. P. Strauss,
“On “risk” and reward: Investigating state anhedonia in psychometrically
defined schizotypy and schizophrenia.,” Journal of Abnormal Psychology,
vol. 121, no. 2, 2012. Art. no. 407.

[17] A. Zandbagleh, S. Mirzakuchaki, M. R. Daliri, P. Premkumar, and
S. Sanei, “Classification of low and high schizotypy levels via evaluation
of brain connectivity,” International Journal of Neural Systems, vol. 32,
no. 04, 2022. Art. no. 2250013.

[18] S. Chikhi, N. Matton, and S. Blanchet, “EEG power spectral measures of
cognitive workload: A meta-analysis,” Psychophysiology, vol. 59, no. 6,
2022. Art. no. e14009.

[19] J. Trajkovic, F. Di Gregorio, F. Ferri, C. Marzi, S. Diciotti, and V. Romei,
“Resting state alpha oscillatory activity is a valid and reliable marker of
schizotypy,” Scientific Reports, vol. 11, no. 1, pp. 1–13, 2021.

10 VOLUME 00, 0000



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS
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