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Abstract

Modernisation and retrofitting of older buildings has created a drive to install Building Energy
Management Systems (BEMS) that can assist building managers in paving the way for smarter
energy use and indirectly, using appropriate methods, occupant comfort understanding. BEMS may
discover problems that can inform managers of building maintenance and energy wastage issues and
in-directly, via repetitive data patterns appreciate user comfort requirements. The main focus of this
paper is to describe a method to detect faulty Heating, Ventilation and Air-Conditioning (HVAC)
Terminal Unit (TU) and diagnose them in an automatic and remote manner. For this purpose,
a typical big-data framework has been constructed to process the very large volume of data. A
novel feature extraction method encouraged by Proportional Integral Derivative (PID) controller
has been proposed to describe events from multidimensional TU data streams. These features are
further used to categorise different TU behaviours using unsupervised data-driven strategy and
supervised learning is applied to diagnose faults. X-means clustering has been performed to group
diverse TU behaviours which are experimented on daily, weekly, monthly and randomly selected
dataset. Subsequently, Multi-Class Support Vector Machine (MC-SVM) has been employed based
on categorical information to generate an automated fault detection and diagnosis system towards
making the building smarter. The clustering and classification results further compared with well-
known and established algorithms and validated through statistical measurements.

Keywords: Heating, Ventilation and Air-Conditioning, Terminal Unit, Big Data, Feature
Extraction, Machine Learning, Automatic Fault Detection and Diagnosis

1. Introduction1

Large urban buildings play an enormous role in energy consumption and are crucial focal points2

in future smart grid efforts. Enabling technologies that can understand building energy profiles,3

remotely identify faults, reduce energy and user discomfort without the need of resident experts4

will form part of the smart architecture where energy can be saved, moved to and utilised in a5

more appropriate way depending on the time of day, year etc. Understanding large buildings play6

a vital role here, because they are now far more complex, energy consuming systems comprising7

several elements for example: Heating, Ventilation and Air-Conditioning (HVAC), lighting, power8

and control systems etc. These environments are also where people spend a vast amount of their9

day and finding ways to indirectly understand comfort drives energy profile changes in addition to10

in-house well-being initiatives [1].11

Equipment failure and performance degradation of HVAC systems in commercial buildings of-12

ten go unnoticed until such occurrences cause negative impact on occupant comfort, triggers an13

equipment-level alarm, deteriorates equipment life or results in excessive energy consumption and14
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Overhead operational costs (OPEX). Therefore, buildings are installed with Building Energy Man-15

agement System (BEMS), which are defined as an IT-based solution capable of sensing, control,16

and automation hardware to direct automated and/or manual improvements to system operations17

utilizing the multi-streams data. It is a rapidly rising market, with BEMS revenues for hardware,18

software and services anticipated to upswing from today’s $2.7 billion universal to $12.8 billion by19

2025 [2].20

This work focuses on the experimental application of machine learning in a real building’s HVAC21

terminal unit (TU) data to detect and diagnose equipment failures, provide significant energy savings22

through pre-emptive maintenance, behaviour analysis and predictive building identification. Large23

volumes of rapidly generated TU data is always a challenging study, therefore, dedicated research is24

being carried out to analyse big data and develop a machine learning based approach to construct25

an Automatic Fault Detection and Diagnosis (AFDD) system. The algorithm employs a data26

driven approach and tie together the hidden information buried from big historical building data.27

The expected outcome of this research is remote TU fault identification and generating automatic28

notification to the building manager which leads to save the energy consumption.29

1.1. Literature Review30

HVAC systems have evolved enormously and significant development has been made in terms31

of data mining techniques for fault detection and diagnosis (FDD). HVAC research studies began32

in 1980’s [3, 4], but from the beginning, practical limitations like scalability and complexity have33

made FDD extremely challenging. Based on this survey, the FDD techniques have been categorised34

into three major parts: model based, rule based and data-driven based approaches.35

In model based approaches the data generated from plants and industries are simulations via36

mathematical models. In [5], physical laws were employed to derive the first principle model that37

signifies the dynamic nature of the system, which is not suitable for real time applications because38

such scenarios require fast controller responses. To further reduce the computational cost, a modified39

physical model was proposed by Shaw et.al [6]. Later this model incorporated real time HVAC40

applications [7, 8]. There are a number of researchers who have proposed the gray-box model41

which is a non-complex model to reduce the computational cost of the system and few systems are42

proposed to handle the limitations of gray-box model [9, 10]. A Black-box model was proposed43

for system identification based on mathematical modelling and has been found to be suitable for44

online FDD. Wu and Sun [11, 12] improved the performance of the black-box model for real time45

implementation based on parametric and multi-stage regression models, and were able to predict46

room temperature in office buildings.47

Rule-based or Knowledge-based perspective for FDD in HVAC systems is applicable when there48

is insufficient data available to employ building mathematical models. This type of method is also49

applicable for large scale, complex HVAC systems, and requires a high level of expert knowledge50

on a system’s fault features [13]. There are three different techniques: casual analysis, pattern51

classification, and expert systems that have been already developed for Air Handling Unit (AHU).52

Signed Directed Graph (SDG) is proposed for casual analysis by employing the fault symptoms53

without first principles [14]. The expert knowledge of a system can be implemented using some54

rules and the process can be divided into three types, (a) a system with partial knowledge by55

framing IF-THEN rules, (b) a system with deep-expert knowledge involved functional reasoning,56

and (c) systems with machine learning capabilities. Schein et. al., [15] developed a FDD system57

for operational control with partial or limited knowledge by setting up IF-THEN rules for an AHU.58

Manufacturers have effectively verified this concept for real time building applications [16, 17].59

Schein and Bush [18] expanded the concept by proposing hierarchical rules for FDD. Yet, expert60
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knowledge based techniques are limited when real data is unavailable. To resolve this restriction,61

machine learning methods like Hidden Markov Model (HMM) [19], Kernel Machines (KM) [20]62

are applied, where knowledge is automatically extracted from data. Pattern classification based63

algorithms are used to build non-linear correlations between data patterns and fault classes in the64

absence of clear model structures. Some popular pattern classification based methods are Bayes65

Classifier [21], Artificial Neural Networks (ANN) [20, 22], Support Vector Machine (SVM) [23],66

Fuzzy Logic [24].67

Data-driven based techniques build relationships between data patterns and faulty classes of68

a system [25]. These approaches extract the key data components and transform the dimension69

of the entire data. These key components are then used instead of the whole dataset for FDD.70

This approach is appropriate for modern HVAC systems being used in huge commercial buildings.71

There are two types of categories for this approach: Signal based FDD and Multi-Variable Statis-72

tics (MVS) based FDD. Some existing signal based procedures are wavelet transformation and73

short-time Fourier analysis [26]. A combined method using wavelet transformation and principle74

component analysis (PCA) is proposed to diagnose faults for air handling unit (AHU) system [27].75

It detects faults in large systems using a dimensionality reduction technique that maps the data to76

a lower dimensional space. In practice, this FDD methodology is appropriate for fault detection77

instead of fault diagnosis. To solve these limitations, integrated or hybrid approaches are considered78

for efficient FDD applications in large buildings [28].79

All of these above stated approaches are limited to particular fault categories (e.g. fan failure,80

valve stuck) or fixed data. BEMS data analysis novella recent problem, indeed characterising81

Terminal Unit behaviour has not been given much attention in the research hitherto. Thus, this82

paper emphasises on TU behaviour analysis.83

The paper is structured as follows: Section 2 outlines the motivation for this work and provides84

detail and context on Terminal Units and their associated problems. Section 3 focuses on the85

proposed methodology and imparts details about the feature extraction technique proposed along86

with the Clustering and Classification methodologies. Section 4 gives the discussion of experimental87

set-up and detailed data acquisition and analysis. The different TU behaviour patterns obtained88

as a result of the clustering and further classification result analysis with validation is presented in89

Section 5. Section 6 concludes the paper and provides the future research directions of this work.90

2. Structural Information of HVAC TU91

The data is collected for TU fan coil units (FCU) from a real building in central London, UK. The92

floor plan drawing of this building is observed closely to understand relationships between HVAC93

TUs, rooms, spaces, and other physical features at one level of a structure. The floor plan presented94

in Figure 1 shows the position of ground floor FCUs, which are marked with a red line border. There95

are 44 FCUs in the ground floor and the whole building comprises of 731 FCUs. These units are96

explicit subcomponents of HVAC systems set up in residential, commercial, industrial buildings and97

are responsible for the final delivery of comfort inside built environments.98

A TU is a device consisting of a heating coil, cooling coil and a fan. It is normally ceiling-99

mounted and monitored by local thermostats. It may either recirculate internal air, or introduce100

fresh air along with re-circulated air. Generally inside buildings, there is a central chiller and boiler101

plant that distributes cold water to all the cooling coils and hot water to all the heating coils. If102

the environment becomes too warm, the thermostat senses this and signals the chilled water valve,103

with cold water then passed through the coil, extracting the heat from the air being blown by the104

fan. If it gets too cold depending on the local set point, the heating coil start working in the same105

way. A typical schematic of a TU is shown in Figure 2.106
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Figure 1: Floor plan architecture of a building in a central London
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Figure 2: TU schematic diagram

The data thus gathered from the TUs inside building exhibit hidden information related to107

building behaviour. A single TU consist of various data streams are as follows:108

• Control temperature [◦C], frequently measured by each TU or in some cases a zone space109

temperature is used.110

• Set point temperature [◦C] is the desired or target control temperature of the unit is set by111

the operator or the administrator based on the current demand.112

• Deadband is the control temperature band or range within the process and create two separate113

outputs of heating and cooling set point.114

• Heating and cooling valve or damper actuator control and feedback signals.115

• Enabled signal to indicate the hours of operation.116

Poorly controlled or faulty TUs such as FCUs can be responsible for significant energy wastage117

and occupant discomfort. For example, a faulty fan coil unit can signal a false heating demand118
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to the boiler, causing the ancillary equipment to activate and begin distributing hot water causing119

rooms to overheat. In the following subsection, different TU issues are explained which might cause120

faulty behaviour.121

2.1. Potential TU Issues122

There are a number of potential issues that can be identified from TU data analysis. Various123

behavioural metrics like saturation, on-ness and hunting can be studied for different TUs to identify124

the prevailing issues.125

1. Saturation can be defined as the proportion of time over a day that the valve or damper126

is open at maximum. Thus the higher the value, the longer a heating or cooling valve (or127

damper) is open.128

2. On-ness can be defined as the proportion of time that a terminal unit has any heating or cooling129

demand over a 24-hour period (i.e. any time that demand is greater than 0%). Simply put,130

it is how long something is on.131

3. Hunting is calculated using the set point, control temperature and is a measure of how much132

it fluctuates over a day.133

Some of the potential issues that can result in faulty TU behaviours are listed as below:134

1. Poor control- Typically, this can happen due to narrow dead bands being set and/or over135

aggressive proportional, integral and differential (PID) control. This can result in the TU136

frequently switching between heating and cooling.137

2. Poor sensor location- The temperature sensor could be located at a wrong position. For an138

instance, in close proximity to heating and/or cooling elements (e.g. back of a drinks cabinet).139

3. Varying set point- The set point may be varied too frequently typically due to occupant140

discomfort (e.g. user is changing set point for personal preference).141

4. Out of hour operation- A unit may be found to operate out of hours because either it has simply142

been forgotten (manually operated and left) or the operational time schedule is incorrect.143

5. Incorrect TU sizing for actual demand- It can happen that the load is underestimated and144

a bigger unit should have been installed. This is found more often in cooling than heating145

mode.146

6. TU unable to receive adequate flow or upstream temperatures- The flow temperature from147

the boiler or chiller is not sufficiently high or low to condition the space, sometimes due to148

over-ambitious temperature compensation.149

7. Stuck-open valve- Often indicated by a saturation value of 1, it could mean the valve was fully150

open over a 24-hour period.151

8. Competition from nearby TUs- A TU is trying to heat the space but an adjacent TU near or152

in the same space, is trying to cool the same area. This is generally found where there is poor153

hierarchical control over a branch of TUs.154

9. Localised effects- This can be caused either due to high solar gains or TU placed very close155

to energy-consumption equipment with high internal gains, like an old lighting fixture or156

photocopier.157

10. Unachievable set point- Sometimes it can happen that a user adjusts the set-point temperature158

to maximum or minimum value that is simply unachievable for that environment.159

Even though a TU is considered as “simple device” there can be a multitude of issues that160

can lead to faulty behaviour and require expert building engineering knowledge to identify and161
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conclude each one of these issues. Manual TU data investigation can be extremely tedious and162

impossible with the ever-increasing amount of building data and the shortage of suitably qualified163

resident building engineers or managers. Hence automating and bringing intelligence to this process164

using data mining and machine learning approaches could be an ideal solution. This work therefore165

proposes a novel, data-driven feature extraction method and subsequent unsupervised clustering166

to identify different TU behavioural patterns without the need of an expert building engineer167

and further supervised classification employed towards making an automatic fault detection and168

diagnosis system for future data prediction.169

3. Proposed Methodology170

The current explosion of data in volume, recording and attributing, has initiated the expan-171

sion of many big data platforms along with parallel data analytics procedures. Huge data might172

produce worse performances in data analytics applications. Simultaneously, it has pushed for data173

dimensionality reduction procedures, but not always with better result [29]. The first milestone of174

the work was then to reduce the dimension of the data set. Thus, we emphasize a novel feature175

extraction method [30] for transforming the data into a lower dimensional space in a unique way.176

Figure 3 shows the work flow involved here, comprising of two stages: unsupervised and super-177

vised learning. Firstly, the vast data is held in a secure cloud and further applied feature extraction178

method, subsequently clustering is employed to group the similar patterns to identify separate faulty179

and non-faulty TUs. Subsequently, classification is applied through training and testing phases to180

understand fault trends and make useful predictions for fault diagnosis. This method leads to181

handle faults and reduce the energy wastage in a building.182
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Figure 3: Computational steps involved in proposed methodology

3.1. Feature Extraction using TU Data183

A novel feature extraction method is implemented based on the six different parameters of TU184

data such as, control temperature, set point, deadband, heating effort, cooling effort, and enable185
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signal. The framework for feature extraction creates events by considering the area under the control186

temperature and the corresponding power curves which involves three different stages:187

1. Event Discovery Stage188

2. Event Area Calculation Stage189

3. Event Aggregation Stage190

3.1.1. Event Discovery Stage191

The event discovery is inspired by the Proportional Integral Derivative (PID) controller response192

curve [31] as shown in Figure 4, a typical step response curve following a controller responds to a193

set point alteration. The curve rises within a period from 10% to 90% of the final steady state value194

known as the rise time. Percent Overshoot is the amount that the process variable overshoots the195

final value, expressed as a fraction of the final value. Settling time is the time required to settle196

within a certain percentage (commonly 5%) of the final value. Steady-State Error is the ultimate197

difference between the process variable and set point. Dead time is a delay between when a process198

variable changes, and when that change can be observed. For instance, if a temperature sensor is199

placed far away from a cold water fluid inlet valve, it will not measure a change in temperature200

immediately if the valve is opened or closed. Dead time can also be caused by a system or output201

actuator that is slow to respond to the control command, for instance, a valve that is slow to open202

or close.203

Transient
State

Steady State

Steady State Error

Time
Dead
Time

Rise
Time

Settling Time

Output

Final Steady
State Value

Overshoot

Figure 4: PID controller response curve

In this stage, the events are selected using control temperature and corresponding power effort204

data streams. Inside a building, when the heating and cooling units are started during normal205

operational hours, the temperature changes depending upon the environmental request. Therefore,206

two types of events, heating event and cooling event are selected depending on the corresponding207

power demand at that time instance. Based on the temperature variations with respect to the set208

point value, the data stream is divided into different phases and used to identify different events209

that happen in a single day. A single day TU data is being separated into four events as shown in210

Figure 5.211

1. Event Start (ES): ES is assumed when the BEMS starts and the time instance when temper-212

ature starts to change.213

2. Response Delay (RD):The delay is anticipated when the temperature starts to respond only214

after a certain delay from the previous point when the BEMS starts.215
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3. Goal Achieved (GA): When the temperature reaches to the desired set point, it is assumed216

as GA. This is basically the time during rise time.217

4. Event End (EE): EE is occurring when the temperature exceeds the dead band.218
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Figure 5: Event discovery process of one day TU

3.1.2. Event Area Calculation Stage219

After discovering the appropriate heating and cooling events, the estimated area under the220

temperature and power curve for each event has been calculated. Subject to the event type area221

calculations are carried out respectively for both heating (H) and cooling (C) events. In effect, six222

areas (three from temperature and three from power curve) for each heating event and similarly,223

six areas for each cooling event are calculated. Altogether twelve different areas are derived from224

all the daily TU data.225

Equation (1) shows the area (AE) beneath the curve f(x) at every time interval ∆x.226

AE =

n∑

i=0

f(xi)∆x (1)

In heating event, the area calculations for temperature are indicated by AH1
to AH3

and for227

power indicated by AH4
to AH6

. Likewise for a cooling event, the area calculations for temperature228

are indicated by AC1
to AC3

and for power are indicated by AC4
to AC6

. After these areas have been229

computed, they are normalized to obtain the final feature values as FH1
to FH6

and FC1
to FC6

as230

denoted by Equations (2) to (5).231

Equations (2) and (3) show the area calculations for a heating event.232

FH1
=

AH1

TH1

, FH2
=

AH2

TH1

, FH3
=

AH3

TH2

where, TH1
= max(AH1

+ AH2
)

and, TH2
= max(AH3

)

(2)
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FH4
=

AH4

PH1

, FH5
=

AH5

PH1

, FH6
=

AH6

PH2

where, PH1
= max(AH4

+ AH5
)

and, PH2
= max(AH6

)

(3)

Equations (4) and (5) show the area calculations for a cooling event.233

FC1
=

AC1

TC1

, FC2
=

AC2

TC1

, FC3
=

AC3

TC2

where, TC1
= max(AC1

+ AC2
)

and, TC2
= max(AC3

)

(4)

FC4
=

AC4

PC1

, FC5
=

AC5

PC1

, FC6
=

AC6

PC2

where, PC1
= max(AC4

+ AC5
)

and, PC2
= max(AC6

)

(5)

3.1.3. Event Aggregation Stage234

Multiple heating and cooling events can occur during a single day therefore, all the events of a235

given type need to be aggregated to represent the averaged values. So, the next step in the feature236

extraction process is event aggregation. The final aggregated features can be represented using237

the Equations (6) and (7), where, k denotes the number of events and n denotes total number of238

occurrences for each event in both the type. Thus, a single day TU data can be represented using239

twelve features for both the heating and cooling events.240

FHk
=

1

n

n∑

i=1

(FHki
) (6)

FCk
=

1

n

n∑

i=1

(FCki
) (7)

3.2. Unsupervised Learning241

Due to the lack of prior knowledge about the data involved, an unsupervised learning method-242

ology is employed to discover a set of TU behaviours. Here, an extended K-Means (X-means) [32]243

clustering is employed on the extracted TU features (obtained from the Equations (6) and (7)). This244

clustering is used to avoid the limitation of conventional K-means clustering, which tried to auto-245

matically determine the number of clusters based on Bayesian Information Criterion (BIC) scores.246

Initially, the whole dataset is considered as single cluster and BIC score is calculated by Equation 9.247

Now, the conventional K-means is performed by varying cluster seed value. The following steps of248

X-means are as follows:249

Improve-params (k-means)- K-means is evaluated by the seed value of cluster number. The250

objective function used for this work is the Equation 8.251

J =

k∑

j=1

n∑

i=1

||X
(j)
i − µj ||

2 (8)
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Where, ||X
(j)
i −µj ||

2 is the Euclidean distance measure between a data point X
(j)
i and the cluster252

centre µj. It is an indicator of the distance of the n number of data points from their respective253

cluster centres. The main idea is to define K centroids, one for each cluster. Each data point is254

assigned to the group that has the closest centroid. After all the data points are assigned, the255

positions of the K centroids are recalculated. The above steps are reiterated till the centroids no256

longer move.257

Improve-structure (BIC)- In this stage, the BIC score is calculated based the clustering258

outcomes. Maximum likelihood of the current clusters is used to determine the BIC. Centroids are259

broken further based on the BIC score in order to better fitting of the data. The BIC is computed260

here using Equation 9.261

BICscore = −2 log(L) +K log(n)

where, L = P (x | θ,M)
(9)

Where, L is the maximum value of the likelihood function of the modelM . The other parameters,262

x, θ, n, and K denote the observed data, the parameter of the model, total number of data points263

and the number of free parameter to be estimated respectively.264

K>Kmax- Once centroid (k) is determined and K-means is performed, Kmax is then selected,265

and all centroids are tested. As the lower BIC score is always preferred for better fitness of the266

data, then BIC score is compared between K and Kmax. If the current model has a better score,267

then the split is considered the best strategy for clustering.268

3.2.1. Clustering Internal Evaluation269

Internal validation criteria are used to evaluate the effectiveness of an unsupervised learning270

technique where the external known class labels are not present. This evaluation measures the degree271

of intra-cluster cohesion and inter-cluster separation. Here, Davies-Bouldin (DB) and Silhouette272

(SI) criterion is perform for the evaluation of the clustering technique.273

• Davies-Bouldin Index- The Davies-Bouldin index is defined in Equation 10, where, ∆i,j is the274

clusters distance ratio for the ith and jth within to between cluster. ∂i and ∂j is the average275

distance between each point in the cluster from the centroid of that ith cluster and the average276

distance between each point in the jth cluster and the centroid of the jth cluster [33].277

DB =
1

k

k∑

i=1

maxj 6=i

δi + δj

∆i,j

(10)

• Silhouette Index- The silhouette indexing [34] is a measure of the similarity of each point with278

other points in its own cluster, when compared to points in other clusters. The silhouette279

value is defined in Equation 11. Here ai is the average distance from the ith point to the280

other points in the same cluster, and bi is the minimum average distance from the ith point281

to points in a different cluster.282

SI =
1

nk

∑

i∈k

bi − ai

max(ai,bi)
(11)

The silhouette value ranges from -1 to +1. A high value indicates that i is well-matched to its283

own cluster. The clustering solution is considered appropriate if most points have a high silhouette284

value. Whereas, a low DB value consider the clustering solution is appropriate.285
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3.3. Supervised Learning286

Supervised learning is exercised on the discovered knowledge from clustering. It has training287

and testing phases to adopt and predict different faults. Although several methods are adopted for288

classification, support vector machine (SVM) is a well-known binary classifier but it is modelled289

as a multiclass classifier in the work presented here. Thus, Multi-Class Support Vector Machine290

(MC-SVM) [35, 36] is employed on the extracted TU feature by optimizing the distance between291

support vectors (TUs from different groups) given by Equations (12) and (13).292

In Equation (12) a set of training pattern is denoted by (x1, y1), ..., (xl, yl) of cardinality l, where293

xi ∈ Rd and yi ∈ 1, ..., k, w ∈ Rd is the weight vector, C ∈ R+ is the regularization constant, and294

ϕ is mapping function which projects training pattern into a suitable feature space H that allows295

for nonlinear decision surfaces. The constraints ξi ≥ 0, i = 1, ..., l, are implicitly indicated in the296

margin constraints of (12) when t equals yi.297

min
wm∈H,ξ∈Rl

1

2

k∑

m=1

wT
mwm + C

l∑

i=1

ξi

subject to wT
yi
ϕ(xi)− wT

t ϕ(xi) ≥ 1− δyi,t − ξi

i = 1, ..., l, t ∈ 1, ..., k

(12)

Whereas in Equation (13), δi,j , is the delta (defined as 1 for i = j and as 0 otherwise). The final298

decision function is defined as,299

argmaxmfm(x) = argmaxmw
T
mϕ(x) (13)

In addition Equation (12) focuses on classification rule (13) without any bias terms. A non-zero300

bias term can be simply exhibited by adding an additional feature to each x. Therefore, different301

categories of data are classified by solving this decision function and the results are analysed in the302

following section. A pseudo code for the proposed work is presented in the Algorithm 1.303

3.3.1. Classification Performance Evaluation304

After performing classification the obtained results are evaluated through well-known statistical305

performance metrics, precision and recall for calculating the accuracy of the system. Precision306

calculate the percentage of truly predictive TUs among all the positively detected TUs in the307

dataset and recall measures the relevant outcomes which are detected among the total dataset308

shows in Equations (14) to (15). The performance measurement is based on the number of true309

positive (TP), false positive (FP), and false negative (FN). TP is the total number of correctly310

labelled TUs, whereas FP is the total of incorrectly assigned TUs, and FN is the total of not311

labelled as should be belonging to particular classes.312

Precision =
TruePositive

TruePositive+ FalsePositive
(14)

313

Recall =
TruePositive

TruePositive+ FalseNegative
(15)
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Algorithm 1 Pseudo code for proposed AFDD

Require: Temperature and power feature of TUs = {T1, T2, ..., Tn}
1: Fault detection stage:
2: Maximum cluster number = Max

3: K = BIC score for previous model

4: Kmax = BIC score for current model

5: for all Max = 2 to 10 do
6: Assign initial values for means = µ1, µ2, ..., µMax

7: Assign each TU to the cluster which has closest mean ⇐ using the Eq. 8
8: Update means

9: Calculate BIC score for current model Kmax ⇐ using the Eq. 9
10: if K > Kmax then
11: return Go to line 5
12: else
13: Max is considered as final cluster number & exit loop

14: end if
15: end for
16: Six groups of labelled patterns = {C0, C1, ..., C5} are produced by X −means

17: Fault diagnosis stage:
18: Train MC − SVM model by 10%, 20%, and 30% data using objective function

19: Make the prediction on rest of TUs

4. Experimental Set-Up314

The present case study is a seventeen floor building in central London, U.K. with seven hundred315

and thirty one terminal units distributed across the different floors. Figure 6 shows the developed316

system architecture and various stages of our proposed AFDD, which handles data storage, re-317

trieval, analysis, visualization, and support for decision making. There are six different parameters318

(set point, dead band, control temperature, enabled, heating effort, cooling effort) selected for this319

experiment. Based on these parameters the demand and the control strategies are varied and deal320

with the real time TU issues as mentioned in section 2.1. These raw data comprise information321

e.g. time stamp, voltage, temperature, etc. It has problems, as would be expected in real environ-322

ments, of different sampling rates for different attributes, variable arrival time, missing values for323

intermediate time stamps, etc. Therefore, the TUs with the missing data are filtered and linearly324

interpolated to resample data at regular ten minute time intervals.325

4.1. TU Data Retrieval Process326

The BEMS data is extracted via a single embedded PC connected to the BEMS network as327

a network node (thus the device needs to be given an address on the network - the detail of this328

depends on the type of BEMS). Currently a PC Engine 2D13 ALIX embedded PC is used. The329

embedded PC is also connected to the Internet using either the buildings existing Internet connection330

or through a mobile network router.331

4.1.1. Data Collection332

The embedded PC contains embedded software that is used to:333

1. Obtain a map of the BEMS network. This includes all the:334
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Figure 6: Framework of the experimental TU data retrieval process

• Local Area Networks (LANs) on a BEMS network (a BEMS network is more accurately335

called internetworks and consists of multiple LANs).336

• Devices on a LAN (a single device may relate to one or many pieces of building services337

equipment).338

• Data points on a device. These can be binary or analogue control signals, feedback339

signals or settings.340

For each of the LANs, Devices and Data point the text label and numerical ID is obtained.341

2. Polling the values of the data points (typically at intervals of 30 minutes data point type342

and, by inference, how frequently values are likely to change. For example: the control and343

feedback signals are polled more frequently while the settings are polled less frequently).344

3. Store/buffer the data if the internet connection is lost.345

4. Securely send the data to the cloud servers.346

4.1.2. Data Characteristics347

This BEMS data follows the characteristics of ”4V ” [37], i.e., volume, variety, velocity, and value348

which reflects big data characteristics.349

Volume: The data is continuously generating and increasing the volume. In this experiment,350

approximately 48 million data points are considered.351

Variety: The data type is not only traditional structured, but also mixed of structured, semi-352

structured, and unstructured. There are six types of data are included such as, time stamp,353

voltage, temperature, binary signal on and off. This complete set of different attributes make354

a composite structure which needs a complex processing logic to handle the aggregation.355

Velocity: The speed of the data flow is very fast. These massive and continuous data is stored in356

Cassandra cloud from the source device. Approximately one million data points are gathered357

every day for a single building, which helps us to make valuable decisions that provide strategic358

advantages after handling the data velocity.359

Value: These data are as valuable as the building outcomes. It enables us to be aware of the360

behaviour of TUs, which increase the potential to improve fault analysis, decision making361

capabilities and measure the faulty equipment for diagnosis and energy saving purpose. The362

proposed work is implemented feature extraction, clustering and classification for decision-363

making process and to determine the ultimate value of the collected data.364
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4.2. Typical Lab Set up for Parallel Processing365

The implementation and performance of the proposed method relies on the processing architec-366

ture in place and is shown in Figure 7. The architecture has been set-up for this work comprises367

Apache Spark [38] an open-source cluster computing framework that enables the scalability and368

fault tolerance of Map Reduce using resilient distributed datasets (RDDs). A RDD is a group of369

objects partitioned through a set of machines that can be reconstructed if partition is lost. Spark370

in memory runs up to 100 times faster for certain applications by allowing user programs to load371

data into a clustered memory and querying repeatedly. It is highly suitable for machine learning372

algorithms [39, 40]. Spark requires a cluster manager and a distributed storage system. Here Spark373

version 2.0 is used with 5 CPU core of 8GB memory each is set-up by one master and four workers374

and the connection of the distributed storage with Apache Cassandra interface. The experiments375

have been performed using 64-bit Java version 8.376

Master

Worker 1

Worker 2

Worker 3

Worker 4

Figure 7: Set-up of parallel processing architecture

5. Result Analysis377

After cleaning and aggregating the data as discussed in the previous section, experiments were378

conducted on four types of data volumes such as, daily, weekly, monthly and randomly selected379

data from the months of July to October (inclusive) 2015. The analysis has been performed on the380

building under test’s historical data to reveal hidden patterns through the employment of machine381

learning. Day analysis was performed on 17th July 2015 TUs, week analysis performed from 17th382

July to 23rd July for 5 working days (excluding weekend) and month analysis done for 22 days383

since weekends have been excluded from the analysis. The random analysis was conducted on the384

randomly selected TUs from July to October 2015. Data details are given in Table 1.385

Table 1: Experimental data details

No of Days
Total number
of TUs

Operating
TUs

Description

1 Day 731 723 17th July, 2015

1 Week, (5 days) 3655 3615
17th to 23rd July 2015
(except 18th and 19th)

1 Month, (21 Days) 15351 15178
17th July to 14th August 2015
(except weekends)

3 Months, (71 Days) 39088 38591
17th July to 23rd October 2015
(except weekends)
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A new feature extraction algorithm (presented in Equation (2) - (5)) is proposed to reduce,386

measure, and build derived values from these initial datasets intended to be informative and non-387

redundant, which is facilitates subsequent learning and generalization steps. The raw data is trans-388

formed into a 12-dimensional ((FC1
to FC6

) and (FH1
to FH6

)) data for each TU. The visualization389

of these multivariate features for a single TU are illustrated by radar in Figure 8. The radar graph390

is a circular display with twelve different quantitative axes. Each axis represents a single feature391

which signifies the fluctuation of temperature and power. The centre of the radar is zero valued392

and the edge point is with maximum value. These feature values are plotted along each axis that393

forms a unique shape and describes TU performance. The proposed feature extraction algorithm394

(described in section 3.1) generates a feature vector of 12 numeric values which contains the cool-395

ing and heating behaviour of a TU. Thus, the radar is being divided into two parts, first six axes396

((FC1
to FC6

)) are represent cooling events and next six axes ((FH1
to FH6

)) are represent heating397

events.398

Figure 8: Description of radar graph

Here, FC1
and FH1

describe the temperature state through the area from the event start (ES)399

to response delay (RD), FC2
and FH2

describe the time of response through the area from response400

delay (RD) to goal achieve (GA), FC3
and FH3

describe the event end after reaching the set-point401

through the area from goal achieve (GA) to event end (EE). Similarly, FC4
to FC6

and FH4
to FH6

402

represent the power demand for corresponding temperature change. So, it is to be further noted403

that greater areas under GA to EE area represent a “well behaved” TU, because this implies that404

the TU achieves the set point (goal) and spends more time within the dead band (range between405

heating and cooling set point), whereas the area under ES to RD and RD to GA is larger, it denotes406

that the temperature is not within the dead band or takes a long time to reach the set point. The407

more area for power effort indicates the more power consumption which also signifies a “badly408

behaved” TU.409

5.1. Clustering Analysis410

Now, the TU data with different attributes are present, but the characteristics or possible411

patterns are unknown except for functioning and malfunctioning TUs. Therefore, the X-means412

clustering is performed to find out the possible partitions of the data by varying cluster number413

from 2 to 10 with 6 being found as the optimal number of cluster to describe the distinct TU414

behavioural patterns.415

Clustering is performed on approximately forty thousand TUs and the visualization of the416

compact groups is shown in the radar graphs below. Figure 9 shows six radars of the daily clustering417

analysis and each radar represents a single TU which is the nearest to that cluster centre to make418
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a generalized conclusion on that group. It is discovered from cluster analysis of TU characteristics419

pattern over daily data (shown in Figure 9), that the heating trend is captured in cluster-3 and420

cooling trends are captured in rest of the clusters. TUs belonging to cluster-0 achieve their set421

point and the feature values are in the third axis (FC3
) of the radar. It represents the area under422

GA to EE events for the temperature curve, therefore these TUs exert little power effort and stay423

within their dead band. Cluster-1 represents TUs whose features are in the third axis (FC3
) which424

indicates GA to EE state i.e., those TUs require average power (e.g., values are in FC6
axis) to425

reach the set point. So, TUs belong to cluster-1 use extra power than the TUs are in the cluster-0.426

The TUs of cluster-2 behave similar to cluster-1 but these TUs use higher power levels to reach the427

set point within the buildings operational hours. TUs of cluster-3 capture the area under RD to428

GA (FC5
) is large for both the temperature and power curves, which means more heating power is429

required, and the set point is not achieved during working hours. The feature values of cluster-4430

fit in first axis (FC1
) which implies time requirement is very large. Thus, area under the ES to RD431

state for both the temperature and power curves indicates that the TUs take longer times and are432

unable to achieve the required set points. For cluster-5, the area under the RD to GA for both the433

temperature and power curves shows the need of high power.434
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Figure 9: Cluster analysis of Daily TUs

Two examples of faulty and non-faulty deemed TUs, obtained from the cluster analysis are435

shown in Figure 10. Figure 10(a) shows cooling non-faulty TU behaviour which belongs to cluster-0436

of Figure 9. This indicates the behaviour where the temperature is consistently held within the437

deadband and low power is consumed during working hours. Figure 10(b) shows a cooling faulty438

TU behaviour which belongs to cluster-4 of Figure 9. Though the TU is exerting maximum effort439

in terms of power consumption, it is still unable to reach the desired set point. In this case it may440

be that the TU is indeed faulty or that the TU is not actually faulty but that the requests made441

of it are unreasonable i.e. poor sensor location (behind a drinks dispense cabinet for example), the442

room is sun drenched or has large unopened windows. Pivotally, the data shows there is a problem.443

Moreover, this work is not limited to any fixed type of faults; it can detect any kind of abnormal444

behaviour as faulty, where the temperature and power are both or either in an untenable position445

as is the case here.446

Therefore, the X-means clustering partitioned the daily TU data into 6 groups based on their447

property. It revealed the 6 different hidden patterns of the TUs. These distinct behaviours are448

16



(a) Temperature within dead band with low cooling power

(b) Cooling saturation and on-ness

Figure 10: Example of (a) a non-faulty TU and (b) a faulty TU

tabulated in Table 2.449

Table 2: Cluster pattern description of daily TUs
Cluster
Number

Description of Clustering Pattern

C-0
TUs that show both heating and cooling characteristics. The desired
control temperature is achieved with low power effort,
and is done in normal building operating hours.

C-1
These are cooling TUs where the control temperature is achieved
within the desired band with medium or average power effort.

C-2
Cooling TUs where control temperature is achieved but with a
high-power effort.

C-3
TUs showing control temperature hunting patterns along with medium
to high power effort and continuation of this pattern outside operational hours.

C-4
TUs where the control temperature does not achieve the desired set point
(out by up to 5 degree C) with high power effort.

C-5
TUs where the control temperature does not achieve the desired set point
(out by up to 10 degree C) with high power effort.
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Furthermore, this experiment is conducted on the same number of TUs for a week, month,450

and for random data to check the feasibility, and robustness of the proposed clustering method.451

Figure 11(a) shows the cluster analysis of TU behaviours during week days, 11(b) for a month,452

and 11(c) for randomly selected TUs. The repetition of the TU behaviour is found during the453

clustering experiment on weekly, monthly, and randomly selected data. TUs of cluster-0 of Figure 9,454

cluster-0 of Figure 11(a), and cluster-3 of Figure 11(b) are found to have similar heating and cooling455

trends, where goal or desired temperature is achieved with very low power demand. Likewise, the456

TUs of cluster-1 of Figure 9, cluster-2 of Figure 11(a), cluster-0 of Figure 11(b), and cluster-0 of457

Figure 11(c) follow similar trends where the set-point is achieved with average power effort. In458

case of TUs from cluster-2 of Figure 9, cluster-5 of Figure 11(a), and cluster-2 of Figure 11(c)459

higher power effort are needed to reach the set-point. The hunting behaviour of TUs is found with460

high power consumption during operational and out of operational hours in cluster-3 of Figure 9,461

cluster-1 of Figure 11(a), cluster-1 of Figure 11(b), and cluster-3 of Figure 11(c). Likewise the daily462

TUs of cluster-4 of Figure 9 is similar to cluster-3 and cluster-5 of Figure 11(a) and Figure 11(b),463

where set-point is not achieved but power is still consumed during out of operational hours. Similar464

TU behaviours e.g. cluster-5 of Figure 9 is found respectively in cluster-4, cluster-4, and cluster-5465

of Figure 11(a), 11(b), and 11(c). It is noted that the patterns found in cluster-2 of Figure 11(b)466

and cluster-4 of Figure 11(c) are very similar to each other, where set-point is achieved and both467

captured heating trends. Another two similar heating patterns of TUs are found in cluster-1 and468

cluster-3 of Figure 11(c), both achieved set-point using average to high power effort.469

5.1.1. Clustering Validation470

This initial pattern discovery process is completely unsupervised where no prior label information471

is available. Internal cluster evaluation criteria (Davies-Bouldin and Silhouette) are used to validate472

the clustering results and assess compactness of those groups. Also, the proposed X-means results473

are compared with two different clustering algorithms: Hierarchical clustering and Gaussian mixture474

model [41] to prove the advantage for using X-means. The quality of the clustering and reason to use475

X-means is summarized in Figure 12. The comparison and validation results across daily, weekly,476

monthly and randomly selected TU data are included here.477

Figure 12(a) demonstrates the DB indexing results of X-means for cluster number 2 to 10 and478

compared with hierarchical and Gaussian mixture algorithm. As the lowest DB value is preferred,479

it is seen from the graph that lowest DB value is found when the cluster number is six for the480

daily, weekly, monthly, and randomly selected TUs for x-means. Similarly, DB values are little481

higher in case of hierarchical clustering. But heavy fluctuation of DB values of Gaussian mixture482

model shows the incompactness of the clustering outcomes. Therefore, the lower value of DB in483

X-means for cluster number 6 shows a good compactness of the clusters than hierarchical clustering.484

Figure 12(b) shows the SI indexing results for x-means, hierarchical and Gaussian mixture algorithm.485

The clusters with high SI index are well matched to its own cluster. It is clearly seen that the SI486

index is quite high for x-means on daily, weekly, monthly, and randomly selected TU data, when the487

cluster number is six, whereas hierarchical clustering achieved high SI indexing for cluster number488

six in all cases except randomly selected TUs. Again, in the Gaussian mixture algorithm, SI values489

are not concentrated for a single cluster number, therefore it is hard to discover a cluster number490

and their compactness. These internal clustering validation results shows that the selected optimal491

number of clusters is appropriate and achieved suitable indexing outcomes consistently for x-means492

than other clustering algorithm. These clustering behaviours results for the developed AFDD were493

all further verified across all tested HVAC TUs with the help of expert building engineers from494

Demand Logic.495
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Figure 11: Cluster wise feature distribution: (a) weekly TU data, (b) monthly TU data, and (c) randomly selected
TU data
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Figure 12: Clustering Validation and comparison

5.2. Classification Result Analysis496

The clustering outcomes are used as pre-processing step for classification of TU data. Therefore,497

the TUs are labelled using the clustering outcomes to make an automated fault diagnosis and498

predictive system for buildings. In this phase the classification is performed by employing MC-499

SVM, where the dataset is categorized and labelled into six different classes for diagnosing diverse500

behaviour of faulty and non-faulty TUs (tabulated in Table 2).501

Here, the experiment is conducted by dividing the TU dataset in 10%, 20%, 30% for training,502

and 90%, 80%, 70% respectively for testing purposes. The number of objects (NOB) or TUs are 656.503

Statistical evaluation of performance parameters like, accuracy, precision, and recall are evaluated504

and recorded in Table 3. The highest precision and recall value obtained from 10% training and 90%505

testing data (marked in bold) in all the cases using MC-SVM. This algorithm achieved an excellent506

performance with 99.3% of precision in randomly selected data, which signifies a high positive507

predictive value for all predicted TUs. Also observed that the performance increased when the508

training data volume is being increased. The highest recall 96.3% is achieved in case of randomly509

selected data, which directs the relevant prediction of TUs with a very high accuracy. Thus,510

experimental result signifies that the algorithm can make fault predictions about TU behaviour511

with the help of very few amount (only 10% is enough) of training data.512

Confusion matrixes are set to concentrate on the type of TUs that are assigned in wrong cate-513

gory by the algorithm. Four confusion matrices are shown in Figure 13. The matrices are prepared514

based on the highest accuracy obtained by MC-SVM (where only 10% training data are used).515

Each element in this matrix is the number of test items with true class in row wise and predicted516

class in column wise. The correctly classified objects are plotted diagonally (marked in blue color)517
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Table 3: Classification results by MC-SVM
Observations 10% 20% 30%

Daily
NOB 656 595 536
Precision 0.983 0.982 0.979
Recall 0.921 0.913 0.897

Weekly
NOB 3262 2970 2672
Precision 0.979 0.978 0.977
Recall 0.905 0.902 0.896

Monthly
NOB 12944 11705 10643
Precision 0.988 0.988 0.987
Recall 0.943 0.942 0.938

Randomly
NOB 29744 27002 24339
Precision 0.993 0.992 0.992
Recall 0.965 0.964 0.964

and misclassified objects are marked in light blue. Though the overall performance of the pro-518

posed algorithm is good, still some characteristics of TUs confound the classifier which causes the519

misidentification. It is clearly seen that the objects of class-1 are misidentified mostly in case of520

daily (Figure 13(a)) and class-2 in case of weekly (Figure 13(b)) analysis. In Figure 13(a) and521

13(b), 6 and (11+7+3+17)=38 objects are misidentified because, the TUs belong to these classes522

are distinct by the cooling and heating temperature but similar in nature with respect to power.523

In case of monthly and randomly (Figure 13(c) and 13(d)) data, misclassifications occurred mostly524

from class-0, whereas this class holds the good behaving and distinct TUs with respect to temper-525

ature and power consumption. A huge number of objects belong to this class and numerically the526

differences between the objects are very small. Therefore, the classifier is over fitted and overreacted527

to the slight fluctuations in the feature values.528

n=656 Class 0 Class 1 Class 2 Class 3 Class 4 Class 5
Class 0 33 2 0 0 0 0
Class 1 0 431 0 1 0 0
Class 2 0 2 58 0 0 0
Class 3 0 1 0 51 0 0
Class 4 0 0 4 0 35 0
Class 5 0 1 0 0 0 37

Predicted

A
ct

ua
l

(a) Daily TUs

n=3262 Class 0 Class 1 Class 2 Class 3 Class 4 Class 5
Class 0 176 2 11 1 1 1
Class 1 0 221 7 0 0 1
Class 2 1 2 1929 0 2 0
Class 3 0 0 0 220 0 7
Class 4 2 1 3 0 348 0
Class 5 0 0 17 0 8 301

Predicted

A
ct

ua
l

(b) Weekly TUs

n=12944 Class 0 Class 1 Class 2 Class 3 Class 4 Class 5
Class 0 7550 6 2 7 8 21
Class 1 9 1279 12 3 3 0
Class 2 26 2 811 6 0 0
Class 3 6 1 1 838 2 1
Class 4 4 1 1 2 1079 0
Class 5 6 4 8 7 3 1235

Predicted

A
ct

ua
l

(c) Monthly TUs

n=29744 Class 0 Class 1 Class 2 Class 3 Class 4 Class 5
Class 0 14364 0 13 0 5 4
Class 1 0 3252 2 11 4 2
Class 2 23 2 2139 5 1 0
Class 3 46 8 0 4311 13 0
Class 4 24 0 2 11 3188 0
Class 5 21 1 6 2 6 2278

Predicted

A
ct

ua
l

(c) Randomly Selected TUs

Figure 13: Confusion matrix by MC-SVM

Further this experimental result is compared with another classification method, k-nearest neigh-529

bour (KNN) [42], which is a well-established, non-parametric method for classification that assigns530

the class number to an object based on the nearest distance of its neighbours. Here, k is chosen as531

1 and 3 and the results are shown in Table 4. Table 4 shows the precision and recall outcomes for532

1NN and 3NN with 10%, 20% and 30% training samples. Thus, it is observed from the result table533

that 30% training sample is required for 1NN and 3 NN to produce maximum precision and recall534
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values, except in case of 1NN for daily analysis 20% training data is needed for high performance.535

Thus, it is determined that MC-SVM provides high precision and recall with less number of training536

data than KNN classifier.537

Table 4: Precision and recall comparison of 1NN and 3NN

Observations
10% 20% 30%

1NN 3NN 1NN 3NN 1NN 3NN

Daily
NOB 654 656 588 593 525 533
Precision 0.945 0.916 0.957 0.944 0.949 0.961
Recall 0.774 0.686 0.818 0.772 0.786 0.829

Weekly
NOB 3265 3274 2966 2964 2680 2697
Precision 0.957 0.950 0.969 0.967 0.972 0.973
Recall 0.818 0.792 0.863 0.855 0.877 0.877

Monthly
NOB 12942 12968 11693 11721 10600 10621
Precision 0.968 0.967 0.971 0.975 0.974 0.976
Recall 0.861 0.855 0.871 0.886 0.885 0.890

Randomly
NOB 29758 29766 26912 26896 24411 24383
Precision 0.969 0.970 0.974 0.976 0.979 0.977
Recall 0.865 0.865 0.882 0.891 0.904 0.898

The precision and recall values are plotted in Figure 14 to compare the performance of MC-SVM,538

1NN, and 3NN for 10%, 20%, and 30% training set. Precision and recall are shown in blue and539

yellow colour respectively. It is observed that MC-SVM achieved higher precision and recall than540

1NN and 3NN for all time spans. Therefore, the performance of the MC-SVM shows the effective541

diagnosis of faulty and non-faulty HVAC TUs is possible with the help of supervised learning.542

The fault diagnosis results by MC-SVM algorithm for all the experimented TUs described above543

coincide with the fact that indicates this method employed for any types of faulty and non-faulty544

HVAC TUs diagnosis is effective.545

5.3. Discussion546

Real TU behaviour is analysed remotely in this work, where temperature set point and corre-547

sponding power consumption are considered as the parameters for characteristics. These parameters548

enable a story to form around the HVAC and its direct environment, i.e. providing real data on the549

building under test and enabling managers to investigate faulty HVACs not all HVACs. Three dis-550

tinct fault and three non-fault clusters have been remotely identified and classified. From the AFDD551

results, it can be concluded that faulty behaviour can be automatically and remotely detected and552

understood. Subsequently useful and exact information can be delivered to those managing the553

TUs in question. Using this vital new information an investigator can then identify if it is the554

environment (set-point issues) or the particular HVAC creating the fault?555

Additionally predictive fault finding can be achieved using the classification results presented,556

thus managers can ensure timely interventions. In some cases where a fault is assumed, in actual557

fact the TUs in question once checked are not ”broken” but for example have had their temperature558

set points set too high or low for their environmental setting, making it difficult for those TUs to559

achieve set point temperature leading to ”faulty” behaviour displays. Additionally, too narrow560

dead band settings (difference between high and low set points) ranges cause many potential faulty561

behaviour. External influences such as weather conditions, sunlight, photocopiers, fridges, manual562

set point changes (based on personal preferences), open windows, etc. are not considered for both563

the set point and dead band levels estimation. Usually set point changes in situations above can564

be triggered by the building occupants depending upon their desired comfort levels and the effect565
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Figure 14: Precision and recall value analysis for TU data of (a) Daily, (b) Weekly, (c) Monthly, and (d) Randomly

of such request on TU behaviour is observable. Affected TUs subsequently demand excess power566

but will be unable to maintain the control strategies requested. Importantly the TUs in this case567

are not always defective but simply trying to achieve unattainable goals. Thus, energy and OPEX568

savings can be quickly made by addressing these external issues and the AFDD proposed provides569

this assistance.570

6. Conclusion and Future Work571

A novel feature extraction technique is presented to extract temperature and power associated572

features from high-dimensional and unstructured TU data. These features provide a good approxi-573

mation for the TU characteristics and are tested on large number of TUs. An unsupervised learning574

technique was employed to identify distinct TU behavioural patterns and discriminate the faulty575

and non-faulty TUs. Subsequently, a classification method was applied to predict and diagnose the576

faults from a building automatically. Due to the more realistic implementation i.e. lack of knowl-577

edge of sensor location, weather data, and the occupancy information, it is difficult to detect and578

diagnose the cause of faults effectively here, though the excellent accuracy of the proposed method579

signifies the real world effectiveness of the work.580

This experiment has been tested on more than 39,000 TUs and gathered the ground truth581

information. Augmenting this work includes further tests on TUs where faults such as, improper582

dead bands and set point temperatures have been identified using AFDD and rectified. It could be583

used to predict faults on more recent data by using semi-supervised learning techniques. Further584
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analysis will be based on the external and internal causes of the faults by the help of building experts585

towards fully remote fault diagnosis, so that, the quality research can provide useful and meaningful586

conclusions. Additionally, deep learning based methods will be explored for on-line training and587

testing purposes to enact AFDD in a real-time manner. The method developed and deployed for588

this paper is limited to a specific type of TU (Fan Coil Unit) of a single building, but it will be589

extended to different types of TUs such as air handling unit (AHU), variable air volume (VAV) and590

chilled beam etc.591
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