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Abstract: In this paper we fix a microeconomic model
of exchange rates and we give the explicit relation be-
tween model’s parameters and its long memory proper-
ties. This avoids long numerical calibration procedures
and allows to build the model with the parameters suit-
able for the required long memory degree.
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1 INTRODUCTION

The presence of long memory property of financial data
has been evidenced through several papers. These anal-
yses concern time series of shares’ prices, price incre-
ments, returns, and several functions of returns (abso-
lute returns, squared returns, powered returns). How-
ever, microeconomic explanation of these data often is
not obvious.

In this paper we provide a microeconomic model for
long memory time series. The main property of this
model is the functional relation between its parameters
and the long memory parameters of the time series un-
der examination. This allows an immediate calibration
of the model avoiding time-expensive numerical cali-
bration procedures.

We start from the statements of the models in-
troduced by Kirman [22], [23], and by Kirman and
Teyssiere [24] . In their paper [24] the authors assume
that the market exchange rates are determined by the
interaction of several agents that act on the market
driven by two different opinions: the fundamentalists
and the chartists. The forecasts made from these two
groups are due to different analyses of the market data.
We modify the evolution of the agents’ opinions given
in [24] transferring the distinction between fundamen-
talists and chartists into the decision procedure of each
agent. Each of them is not purely fundamentalist or
purely chartist any more, but follows a mixed strategy,
depending on the influence of different sources of infor-
mation. Moreover, we introduce a new term that allows
each agent to perform a self-correction on his own fore-
casts.

The paper is organized as follows: for convenience of
self references of the paper the next paragraph resumes
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the main definitions and properties that will be used
in the following paragraphs. Section 3 contains the de-
scription of our model and Section 4 provides the proof
of the long memory properties. - Section 5 contains a
short description of the model of Kirman and Teyssiere
and Section 6 explores the differences between the two
models.

2 DEFINITIONS AND PROPERTIES

2.1 Long term memory

A stationary process {X,} is called stationary pro-
cess with long memory if its autocorrelation function
p(k) has asymptotically the following hyperbolic rate
of decay:

p(k) ~ L(k)k*~! ak = o0

where L(k) is a slowly varying function, i. e.
L(Ak)/L(k) - 1 as k — o0, VA > 0.

The parameter d summarizes the degree of long range
dependence of the series. If —0.5 < d < 0 the series is
mean reverting; if d = 0 there is no correlation between
the data and, if 0 < d < .5 the correlation function
decays slowly with the lag k& and the time series has a
long range or long memory property.

Instead, the autocorrelation function of short mem-
ory processes decay to zero at an exponential rate [19]
[24].

2.2 Hurst’s H exponent

Given a time series {X;} Hurst’s exponent H de-
scribes the degree of dependence among the increments
of the analyzed process. It can be defined as follows:

E(Xt4r — Xp)* ~ e

Several methods are available for its estimate [25] [24]
and H =d + %

2.3 Long term memory and spectral analysis
estimate

Spectral analysis can provide an estimate for H. The
spectral density of a covariance stationary time series
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{X:} is given by

FO) =1(0) +2 Y v(h)cos(Ah)

h=1

where y(h) = Cov(X;, X;—p) is the autocovariance
function.

The spectrum of stationary processes with long range
memory can be approximated in the neighborhood of
the zero frequency as

Sl f7¥ 1<a<3,f-07

The following relation holds: H = <3L1. ( [28], [26])

Any covariance stationary time series with hyperbol-
ically decreasing autocovariance function of the form
p(h) ~ h??~1 with 0 < d < .5 is a long memory process,
i.e. the decay of the autocorrelation function uniquely
determines the size of the process’ long memory. If
d = 0 then {X;} is a short memory process.

2.4 Long term memory and I(d) processes

A time series {X;} is called fractionally integrated
with differencing parameter d (X; ~ I(d)) , if

T +d)

Xt = ZC]'Q_J' with Cj = m

3=0
ande; ~ 1.i.d.(0,0?)

d is called the fractional degree of integration of the
process and H = d + } [15],[34]

2.5 Beta distribution and its properties

Definition 2.5.1 The random variable z is an ordi-
nary beta-distributed if its probability density function
is defined as

1
2)=—=——2%"T1-2)1 0<z2<1, (1
pe) = prayy® 12 &
where a e b are positive parameters and B(a,b) is the
beta function defined by

1
B(a,b) = / w1 —u)’ du
0
This distribution is referred to as b(a, b).
Proposition 2.5.1
If X ~ b(a,b), then the random variable Y =1 - X is
a beta generalized random variable with law b(b, a).

Let us now consider a new random variable X which
is related to Z through the power transformation

X
7=(5)" or X =CZ* ®)
The parameter h may be either positive or negative.

By this transformation we can define a generalization
of the beta distribution.
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By b(p,q,h,C) we denote the four real parameters
distribution generalized beta, defined by the density
function f given by

@) = g (- @M 0se <

Definition 2.5.2 The random variable « defined by
(2) has a beta generalized distribution if its probability
density function is defined by

[A|

b(a,b,C,h;z) = =—=(
B(a,b)C

z

2y - (

z -
M @)
where 0 < z < C.

The moment M, of order n for X is given by

ZLla+b)T(a+ )
Dla+b+3)(a)

B(a+ %,b) _

Mn =" =B ab)

)

Remark 2.5.1 A standard beta random variable is
also a generalized beta random variable with param-
eters h = C = 1. Thus the properties of the beta
standard random variable can be extended to the beta
generalized random variable. )

The beta generalized distribution is close with re-
spect to the class of power transformations. .

Proposition 2.5.2 Let X ~ b(a,b,C,h). The ran-
dom variable
Y =rX°, (5)

where 7,5 € . Then Y ~ b(a,b,7C?, 2).

Remark 2.5.2 Given X ~ b(a,b,C,h). From the
last proposition follows that,

o |&

AX ~ b(a, b, AC, h)

and
X7 ~ b(a,b,C", %)

3 MICROECONOMIC MODEL

In this paper we propose a microeconomic description
for financial time series with long term property. In
particular, we consider the application of the model for
the description of exchange rates.

Exchange rates are determined by the interaction of
several small investors. There are no market makers.
Let us consider only one foreign currency. The mi-
croeconomic explanation of the long memory property
enters the decision procedure of each agent, whose fi-
nal action is driven by several causes: thus we don’t
provide a neat distinction between the pure fundamen-
talists and the pure chartists. We describe the situa-
tion in which each agent tries to get information from
different sources: technical analysis and observation of



the fundamentals. Other information sources like ob-
servation of the behavior of the other agents, social in-
teraction, hierarchical interaction, external shocks here
are not considered. Thus, in order to make a fore-
cast AP, ;11|1; ; of the exchange rate increment AP; ;44
conditioned to the information available at time ¢,
I;, each agent 4 relies on a technical analysis fore-
cast APf, |+ conditioned to his information at time
t, and on fundamentalist forecast AP{; 11lLit, condi-
tioned to his information at time ¢, too. Let us indi-
cate the individual proportion between the two points
of view. Thus

(APieia)lie) = kil AP i) + (1= ki) (AP | Tig),

The exchange rate of the market is given by the average
of the exchange rates associated to the agents, i.e.

1
Po=) Pt (6)
=1

The chartist approach assumes that the investor can get
information by observing the time series of the market
data. In this model we consider chartist forecast com-
posed by two terms: for the sake of simplicity, a forecast
due to the increment of market exchange rates made by
using the simplest linear model

hy—1(P = Pi—1)
where h is constant, plus an additive term,
a;i(Pi—1 — P 4-1)

where @; € D0, 1], Vi, that takes into account a self
correction of the agent obtained by the observation of
the difference between the previous market price and
the previous agent forecast. Thus we have that the
chartist forecast is given by

AP i = ey (Pe = Pi1) + @i(Pio1 — Pig—1) (7)
and
(1= k)AP 1 Lip = (1 = ki)he—1(Pt — P—1)+  (8)
(1 ~ ki)@i(Pi-1 = Pyy-1) = (1 ~ ki)he—1 P+
+(1 — ki) (@ — he—1)Pim1 — (1 — ki)asPig

So we.have a linear relation between the exchange
rate predicted at time t + 1 and the variation of P,
independent from the agent, and we have an additional
stochastic shock associated to the comparison between
the market situation at time t—1 and the forecast made
by the agent at the same date.

In the fundamentalist analysis the value of the mar-
ket fundamentals is known, and so the investor has a
complete information on the estimate of the exchange
rate (he understands if the exchange rate is over or un-
der estimated). We thus have the following relation:

APi{tﬂlIi,t =v(P — P), (9)

where P, is a series of fundamentals observed with a
stochastic error from the agent ¢ at time ¢, i.e.

P, =P +a

with a; ¢+ = 5+ P; and B e_D[O, 1].
The fundamental variables P;; can be described by the
following random walk:

Pit=Pi1+e, e~N(O,0?)
Thus
kiAPi{t+1]Iz’,t = kivPiy + kiv(Bis — 1)P,, (10)

We suppose furthermore that each agent may invest

in foreign riskly value with stochastic interest rate p; ~
N(p,0?) and in riskless bonds with a constant interest
rate r. We have to suppose that p > r (otherwise we
are in meaningless hypothesis).
Let us define with d;; the demand of the foreign value
associated to agent ¢ at the date ¢. Thus the wealth
invested in foreign riskly value is given by P,11d;: and,
taking into account the stochastic interest rate pi41, we
have that the wealth grows as (1 + py41)Piy1di - The
remaining part of the wealth, (W; ; — P,d; ;) is invested
in riskless bonds and thus gives (Wi — Pid;¢)(1 + 7).
The wealth of the agent 7 at time ¢ + 1 is given by
Wi t+1, and it can be written by

Wit = (U + pep1) Pigrdiy + Wie — Piedig) (1 + 7).
The expression of W; s41 can be rewritten as
Witer = (1 + p41) AP padig + Wig(1+7)—  (11)

—(r = pe41) P 4di -

The utility function associated to the agent ¢, and con-
ditioned to his information at time ¢, is defined by:

UW,allie) = EWieallie) — pV Wil i),

where F and V are the usual mean and variance oper-
ators and are given by:

E(W,t41|Lit) = (A+p)AP; 11 di o+ Wi 1 (14+7)—(r—p) Pigdi 4

and
V(Wiei1lli) = VI + pey1) Pisra)(dig)?

Each agent ¢ can change his demand d;; in order to
maximize the expected utility, conditioned to his infor-
mation at the date t.

For each agent 4 the first order condition is

(14+p)AP; 41— (r—p) P; s —2uV[(14ps11) Pie41]die = 0,
and thus we obtain

dip =bitPit + 9it AP 441,
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with
bis = i
YTV (P (1 + pes1))’
p+1
git =

2uV (Pigr1(1+ pra))

Let X;; be the supply of foreign value for the agent
i. When the market is in equilibrium, the interest rate,
that is used by the investor for the transactions, is such
that

Xt =bi Py + 9it AP 1.

thus —X;+/b; ¢ = —(9i,¢/b5,t) AP; ¢41. Continuing
to follow the Kzrman and Teyssiere approach we assume
that

Xit

big

P =

Setting ¢ = —(b; ¢/ 9:t) = ?—Z we have that

AP4i1 = —cPiy +cPyy

By these relations we obtain:

P;: = (vkifc— 1)Pz t+— [(,31 = Dvki+(1—k;)he—1 )P+

(12)
F2[0 = k) (@ — e ))Pros ~ (1~ )& Piss

4 LONG MEMORY PROPERTY OF THE
MICROECONOMIC MODEL

By the definition of P; given by (6), we have the
following result:

Proposition Suppose that the following conditions
hold:

1. /Bi,t = -

2. a=01-k)

he—1 ht 1

vk; + =

+1;

3- kz ~ b(p’pvla 1)7
4. pe(-1,1).

Then, for N — +o00, we have that P; has long memory
with Hurst exponent given by H = 2L

" Proof Let L be the difference operator such that
LP =P
Define §; = —2(1—k;)as, &iép—1 = L(1—ks) (@ —y—1).
From the hypothesis k; ~ b(p,p,1,1) and from
proposition 2.5.1 follows that (1 — &;) ~ &(p,p,1,1).
From this result and by applying proposition 2.5.2 fol-
lows that (1 — k‘)(f%) ~ b(p,p,—1,1). For particular
a&; we have that §; still has a beta distribution. As
example this happens if a; = (1 — k;)%. In this case
ﬂ ~ b(p7p7 —%) 6)
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Then (12) becomes ( by using also the first hypoth-
esis):

Py = (l/c)ukji + 1}—)1.7& Giée- Py (13)
1~BL 1-pL
For the definition of P, and P, ;, we can write
1. (1 ki +1 =
Pr= Z (Wkitlp  &ip ) (4
i=1 1- :61 1- ,81,

In the limit for N — co and by the definition of P we
have

Py = plfekit 1,
1-AiL

Gii€r—1

]+E[1‘ﬁiL

P, =

S 1 N
~ 67 P
P = 1;21 Pt—kﬁt-k/O a—__ﬁ‘adF(O% B)

Suppose, as a further hypothesis, that there exist a
random variable o* ~ D(0,1) with mean p such that

&= (1-p)a*, and o* is independent from 3. Thus

00 1
=S P / o (1~ B)B*1dF(a”, B) =
k=1 0

3 é 1 ' a Ak—1 A
:gPt-kEt—k/O (o] dF(C! )/0 (l—ﬂ)ﬁ dF(ﬂ) —

0
Zath ket_ (15)
k=1

Thus

Bp+k-1,p-1

) —1-
~ cok™t 7P
B(p,p) :

ag = €1 (16)

This is a characteristic of a long memory process [16].
Thus we have a long memory model I(d) with d = p and
thus Hurst exponent H = p+1 ( 8], [9], [16], [17], {19],
(20], [25]).

5 THE KIRMAN AND TEYSSIERE MODEL

The microeconomic model introduced by Kirman and
Teyssiere in [24] analyzes the exchange rates and it uses
an epidemiological model developed by Kirman ( [22],
[23]). Their basic idea is the existence of two groups of
agents, called chartists and fundamentalists, who differ
by their price forecast. The important feature of these
models is that individuals change from being funda-
mentalists and become chartists and vice-versa, but at
time ¢ each agent behaves either purely as a chartist or
purely as a fundamentalist. Thus, the groups are not
fixed in size and this has consequences for market be-
havior. The model is an equilibrium one, i.e. the level



of the exchange rate at each time point is such that the
demand and supply are'equal. By assuming very short
time intervals, this can be a realistic hypothesis. In
the model, it has been assumed that the market is not
efficient, and the agents can predict the price at time
t+1, given the information at time ¢, by the following
relation:

E(Piy1|L) = APl + P, an

where AP, ;,|I; is the predicted price change at time ¢+
1, given the information set ;. Let P; be the exchange
rate at time ¢. Chartists make the assumption, that the
next change in exchange rate is a linear function of the
previous price change, i.e.
APtc+1IIt = h,(]Dt - Pt,]_) = hAPt, (18)
So we have a linear relation between the exchange rate
predicted at time ¢ + 1 and the variation of F;, for
each agent that takes position in the market. On the
other hand, the fundamentalist analysis is based on the
known value of the market fundamentals, and so the in-
vestors understand if the exchange rate is over or under
estimated. We have the following relation:
AP/, |L = v(Pye = P, (19)
where Pi,t is a series of fundamentals observed with a
stochastic error, i.e. B, = B, + az, with a; ~ N(0,02).
In the model it has been assumed that the fundamentals
P, follow a random walk given by:

B=P_i+¢, & ~N(O,Uf)

Denote by p; the foreign interest rate, d; ; the demand
by the i** individual for foreign currency and r the
domestic interest rate. The exchange rate P; and the
foreign interest rate p; are considered by the agents as
independent random variables, with p; ~ N(p,0?) and
p>r.

A part of the wealth W, of the agent i at time ¢ is
invested in foreign currency, and the remaining part
in the domestic value. At time ¢ + 1, by the effect of
the interest rates, the cumulated wealth of the agent 7,
Wi t+1, is given by )

Wits1 = (14 pey1)Pepadiy + (Wie — Pedi 1 )(1 + 7).
The expression of W; ;41 can be rewritten as
Witr1 = (14-pe11) APy 1 ds y+ Wiy (147) = (T—pig1 ) Pidy .
(20)

The utility function associated to the agent ¢, and con-
ditioned to his information at time ¢, is defined by:

UWigallie) = EWi o1 |Lie) — bV Wieri|Lin),

where E and V' are the usual mean and variance oper-
ators and are given by:

E(Witallie) = (14p) AP di e+ Wit (147)~(r—p) Pediy
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and
V(Wigaa|Lig) = VI + prs1)Prysl(die)?,

and p is a constant, that denotes the risk adversion
coefficient.
In order to maximize the expected utility, each agent &
changes his demand d; ;, conditioned to his information
at the date .

The first order condition is

(1+p)APy1 = (r = p) P = 2uV[(1 + pti1) Peta]die = 0,
and thus we obtain
dit = bit Py + g5t APy,

with
b, = p—r.
YTV (P (A prr))
_ p+1
2uV (Per1(1 + pe41))
Let X; be the supply of foreign value. The condition
such that the market is in equilibrium is that the supply
for foreign exchange X; is equal to the demand, i.e.

git

Xt =bP + gt APy,

where we split the market forecast AP;4; into the part
forecasted by the fundamentalists and the part fore-
casted by the chartists, i.e.

APy = kAP, + A —k)APE,,  (21)
where k; is the proportion of agents making a forecast
based on a fundamentalist approach.

Let us denote x
p, — 2t
P = "

By these relations we obtain:
Py = clvky(P, — Py) + (1= k)A(P, — Proy)] + B, (22)

by assuming that P, = X;/b;, where the constant ¢ is
given by
14+p

r—p
Keeping into account the definition of P, the (22) can
be written as

1 Y = ckiv
Ph=——PP ;— P,
ET 10t ! 1—v t+1+c(ktu—(1—kt)h)at
(23)
where
_ 1 -+ Ckf,l/
"= C(l - kt)V

(22) and (23) are valid under the condition that the
denominator is different from zero, i.e.
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or, equivalently, if +; is different from one. Since k;
is the only unknown parameter in equation (24), given
that c(v + h) # 0, then 14 cksv — c(1 — ks)h = 0 if and
only if
_ ch-1
T+ h)

" Given that k; € [0,1], then 1+ ckyv — c(1 — k)b # 0 if

and only if

ch—1 ch-—-1
>1 o0 ——

c(v+h) ce(v+h)

Given that ¢ is negative, the conditions in (25) are
equivalent to

<0. (25)

(26)

If v = 0, then the fundamentalists believe that markets
are efficient, and the condition (26) is satisfied.

Now we want to analyse the process governing the evo-
lution of k;. The assumptions of the autors are that
agents interact and agents comunicate their beliefs on
the next period forecast through a particular epidemi-
ologic process introduced by Foellmer in [13]. Since the
parameters of the epidemiologic model are independent
of the previous parameters of the model, the proportion
of fundamentalists and the forecasts of the agent are
independent of the economic variables. Let 8; be the
number of agents with a fundamentalist forecast at time
t. An assumption of the model is that pairs of agents
meet themselves at random and the probability that
the first agent is converted to the opinion of the second
one is equal to (1 — J). Moreover, each agent change by
himself, independently, his opinion with probability (.
The dynamic evolution of ¢, is given by a Markov chain.
We can write that 6 becomes [23]

P6,0+1)=(1- %)[w (1- 5)ﬁ"j]
P@,6—1) = %[H (1 —s)x—:—‘;]

P(6,6) =1—P(6,6 +1) - P(6,8 — 1)

After the meeting, the proportion of fundamentalists
is equal to 6;/N. In the Kirman and Teyssiere model,
proposed in [24], the conditional probabilities are also
affected by the following rule:

Yiv Lk 505)
- N
where 1 is the indicator function and k;; is the obser-
vation at time t by the agent i of this proportion, and
it is affected by a stochastic error, i.e.

6

kit = Nt

If agent i observe that k;; > 0.5, then he will make

a fundamentalist forecast, otherwise he will make a
chartist forecast. Thus the (27).

+ €4, With €4 ~ N(0,02).
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6 COMPARISON BETWEEN THE
ELS

MOD-

The model that we have introduced can be reduced
to the Kirman and Teyssere [24] model for particular
values of the parameters. This comparison let under-
stand the role of the parameters of the models for the
description of long memory time series.

In the limit N — oo and if @;¢ = 0,V:,t the model
introduced in paragraph 3 produces the same dynamics
for P; of the Kirman and Teyssiere [24] model with
gg = 0.

Let us compare the evolution equations of P; for the
two models. The initial description of the agents’ be-
havior is different in the two models, but for some val-
ues of the parameters it is possible to obtain the same
evolution equation.

Keeping into account the results reported in [24] we
have that the introduction of &;; terms is strictly nec-
essary for the discussion of the long term memory prop-
erties of the model.

The hypothesis that k; are beta variable is not
strictly necessary, but it is useful in order to get a com-
parison of the structure that produces the k;. In the
limit N — oo instead of the markovian evolution of k;
we have that the random variable k obeys a b(e, a, 1, 1),
distribution [22),[23]. Thus the hypothesis in our model
of k; beta is useful in order to keep the comparison be-
tween the two models.

7 CONCLUSIONS

In the model proposed in [24], the long term mem-
ory property has been analyzed by various model in-
dependent tests, by a numerical implementation point
of view. The main results are around the returns (that
are uncorrelated) and absolute returns and squared re-
turns (that display long memory). The microeconomic
model presented in this work is more general, and the
Kirman and Teyssiere model can be seen as a particular
case of the one presented in this paper. Anyway, our
aim is different. We prove that the exchange rates, un-
der certain hypothesis, can be represented as stochastic
processes with long term memory property.

The introduced model can be extended in several
ways. As an example @&; can have different distribu-
tions, as long as the long memory properties continue
to hold. It could be interesting to fix the largest class
that provides the same results. The distribution of k;
has been assumed to be a Beta distribution in order
to get comparable the evolution equations of P,. We
didn’t introduce any further explanation for this dis-
tribution as due to the behavior of the agents, like the
epidemiological model. Thus it could be interesting to
explore the possibility to introduce a more detailed in-
teraction dynamics for k; that allows to get the same
long memory properties of the model.

Another generalization concerns the distribution of



k;. If we are not interested any more to keep on the
comparison with the model of Kirman and Teyssiere
[24},[22],][23] then we can change distribution in such a
way that the proof of long memory properties continues
to hold.

The model are both equilibrium models. Another
interesting generalization could concern the application
of the equilibrium model for time series different from
the exchange rates ones, as example dealing with riskly
and not riskly assets with stochastic interest rates.

Thus there are several interesting possible develop-
ments, last but not least a deeper analysis of the used
hypotheses of the distribution of variables in order to
fix the minimum amount of hypotheses that it is nec-
essary to use.
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