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Abstract 

A Note on the Principle of Transference 
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Centre for Configuration Studies 

Faculty of Technology 
The Open University 

Walton Hall 
Milton Keynes MK7 6AA 

We give a precise statement of the Principle of Transference. The proof is a 
simple consequence of a Clifford algebra construction due to Study [7), and 
explained in Porteous [5]. It applies in all odd dimensions. The construction 
gives a realization of the double cover of the group of inhomogeneous rotations 
as a sub-group of the group of units of a certain Clifford algebra. This 
Clifford algebra also contains the Lie algebra of the inhomogeneous rotation 
group. In three dimensions a study of the invariant bilinear forms on the Lie 
algebra leads us to a co-ordinate free description of the pitch of a screw. 

Introduction must set it in a more general context. So 

The principle of transference has the status 

for our purposes we will adopt the following 

definition. 

of a "folk" theorem. It was reputedly proved 

by Kotelnikov, but this reference is said to 

have been destroyed d uri ng the Russian 

revolution. Consequently there is no precise 

statement of the theorem and so no 

understanding of its range of validity. 

It has long been known that lines in 3-space 

can be represented by dual vectors. That is 

to say elements of lU 3 , where ID is the r"ing 

of dual numbers tD:. lIt a}. Now 

roughly speaking the principle of 

transference says that expressions concerning 

systems of position vectors remain true for 

systems of lines if the vectors are replaced 

by the corresponding dual vectors, see {6J. 

The utility of the principle for the theory 

of spatial mechaniSlus is clear. However for 

a deeper understanding of the prinCiple we 

Principle of Transference 

If M is a representation module for the 

rotation group 50(3) then MCIID is a 

representation modu-Ie for the group of 

proper euclidean motions (inhomogeneous 

rotations) 50(J)@ IR3. 

We could have been even more general here 

since as we shall see, the principle applies 

to all odd dimensions. The relevance of 

representations of 50(3) and SO(3){9IR 3 is 

clear if we assume that "expressions 

concerning systems of vectors or lines" 

behave covariantly 

operation. 

under the relevant 

almost symmetry Thi s is 

guaranteed to be the case since physically 

relevant quantities should not depend on the 

co-ordinate system from which they are 

derived. 
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In order to prove the principle of 

transference, we first study the Clifford 

algebra of a certain degenerate quadratic 

form . This is well worth the effort, not 

only does reduce the proof of the 

principle 

it 

of transference to a simple 

observation but also we get a representation 

of the Lie algebra of the inhomogeneous 

group. The Lie algebra of a group can be 

thought of as its infinites imal elements. In 

tllree dimensions we can identify elements of 

the Lie algeb r a with motors [IJ I and the 

projective motors are screws. 

This view of motors and scre\J$ seems to be 

novel. We hope to explore its implications 

more deeply in future papers . 

2 . The Clifford Algebra 

We follow closely the treatment given by 

Porteous [5 p.276] Let lR denote the 
p, q 

usual Clifford algebra with p basis elements 

whicl} square to +1 and q basis elements which 

square 

ext r a 

to -I. We prolong 

basis element e, 

1R p,q 
which 

by adding an 

anti-commutes 

with all the 

e 2 
other basis e lement s but squares 

to zero; - o. We labe l the resulting 

algebra 1R 
p, q fl . 

Now 

Spin groups we look at 

in 

a 

analogy with 

sub-group of 

the 

the 

units in 

the !l{n of 

IRO,n,l and examine 

monomials in e
l

, ••• , 

its action on 

Consider the group E(n):== 

{(g + '/Ltge) e: UtO,o,1 : g ~ Spin(n); 

this is clearly a sub-group of the 

algebra, IR+ of " 0,n,1 0 ,n,1. For any x£.IR
n 

we have 

(g + II\.t ge) 

where is the 

a rigid motion 

calculated 

(I + xe) (g + '/Lg -tel 

1 + f(x)e (1) 

conjugation 10 IRO and f is 
,n 

of ~n . The map f is readily 

f( x) '" gxg + t 

2 

The product of two group elements is 

(g + 'I"tge) (g ' + -'\-t'g'e) 

(2) 

Clearly E(n) is the semi - direct product; 

E( n) Spin(n)(l) IRn 

No t e that if we chose g! Pin(n) the 

corresponding group defined as above would be 

the semi-direct prod _uct of Pin(n) with IRn. 

However because of (2) this would not give 

the usual action of Pin(n) on IRn. Ai so we 

can 

E(n) 

regard (1) as givin g a homomorphism 

onto SO(n) (l) IRn . The only elements 

of 

of 

E(n) which give the identity rigid motion are 

1 and -1. 

Now we observe that for even dimensions we 

have the fol lowin g isomorphism 

Writing for Ilb£ and for the 

isomorphism is g i ven by sending e
i - e

i 

and 

isomorphism 

e
2k

e ....-.C.. 
so the image 

This is 

of any 

an algebra 

element is 

known once the images of the 

fo r example we have: 

generators are 

Biven; 

This 

only 

only works for even dimensions since 

then does each e
i 

commute with 

Now we are in a position to prove the 

principle of transference. Any 

SO(2k + I)- modu l e M carries a representation 

of Spin(2k + 1) and 50 a representation of 

the 

of 

+ 
algebra tR O ,2k+l. 

a Clifford algebra 

The even 5ubalgebra 

is isomorphic to the 

Clifford algebra with one less generator, 

[5 p.253J 

see 

+ 
IR O,2k+l IRO • 2k 



Clearly [1®1D carries a 

= IR O ,2k,1 and so 

for the subgroup 

representation of 

by restriction is a 

Spin(2k+l)@IR2k+ 1 • 

Again 

mod ule 

by restriction this 

for SO(2k+l)(J)IR2k+ 1 

originally a SO(2k+l)-module. 

must also be a 

s i nc e M was 

We conclude this section with a few remarks. 

For k .. (i.e. 50(3» the relevant algebra 

is IRa ,2®1D .. 111(8)10 which is just the dual 

quaternions, also sometimes called Clifford's 

biquaternions. 

Ou r proof uses the spin groups and so it is 

clear that the principle of Transference also 

applies to the double valued or spinor 

representations. In particular the 

quaternion representation of 50(3) (Spin(3) ~ 

SU(2» becomes the dua I quaternion 

representation of the inhomogeneous group . 

In the above we would have got exactly the 

same results 

instead of 

if we 

IR o' n' 
of the 

had started with tR
n

•
o 

our choice reflects the 

conventions subject, see [ 21 for 

example. Finally we note that by no means 

all of real representations of 

inhomogeneous group are obtained by 

the 

this 

dualizing construction. A thorough treatment 

of the representation the ory of 50(3) Q) jR
3 

can be found in 14]. 

For examples of the use of the Principle of 

Transference in kinematics see [3]. II e re we 

will content ourselves with a few remarks 

that expand on the definition given in 

last section. Consider two 
T A (A l ,A 2 ,A 3 ) and! 

vectors 

the 

by 

definition these transform according to the 

standard 

50(3) • 

3-dimensional 

Now the dot 

representation of 

invariant , that is it transforms according to 

the 

The 

trivial I-dimensional representation. 

cross product ~, transforms as • 
vector, this is special to SO(3) and it also 

has other special propertiesj see the next 

sec tion. However some aspects of the cross 

product can be generalised to 2k+l 

dimensions, we can form the second order 

antisymmet ric tensor Tij "" r/t,.(AiH
j 

This transform s according to a 

3 

representation of SO(2k+l) and hence we are 

justified 

also form 

in 

a 

calling it 

symmetric 

a tensor. Now we can 

second order tcnsor) 

S i j ,. Ila. (A i B j 

symmetric dyad. 

+ AjBi) sometimes 

All these objects 

called a 

and their 

generalisations are co - ordinate free. in the 

sense that if we know their values in one 

co-ordinate system we can use their 

transformation properties to find their 

values in a transformed co-or dinate system . 

We expect physically meaningful quantities to 

behave in this way. Moreover we expect to be 

able to express physically meaningful laws 

and formulae in terms of such objects. Now 

the Principle of Transfe rence as we have 

proved it above, tells us that .for each 

rotationally 

contravariant 

corresponding 

invariant, 

quantity 

dualized 

covariant or 

there is a 

transforms according to 

quantity 

the 

which 

dualized 

representation. The dualized quantity is 

tlence physically meaningful for systerns which 

are symmetric with respect to the 

inhomogenous group. Du al vectors correspond 

to vecto r s and dual dot and cross products 

are the dualizations of the ordinary dot and 

cross produ.ct as is well known. We have 

sho""n that this is gene rally true, for 

example dual tensors can be defined and would 

transform according to the dualization of the 

ordinary tensor representations. 

J. The Lie Algebra of the Inhomogeneous 

Rotation Group 

We conclude this note with a brief account of 

the Lie algebra of SO(n)(!)IRn • This will give 

an indication of the power of the Clifford 

algebra construction. 

The Lie algebra £' Spin(n) , of the group 

Spin(n) is generated as a vector space, by 

the monomials of 

Is true for the 

order 2 in 

Lie algebra 

IRO • 
• n 

The same 

LE(n) of E(n). 

th at is a basis is given by t he elements: 

""ie. , , e
j "'" e i e j 



The product is just the commutator with 

respect to the Clifford multiplication 

lX, Y) XY - YX X, Y E. ~ E( n) 

The adjoint action of the group on its Lie 

algebra Is given as follows 

'ix¥-I 

1£E(n), X E .tE(n) 

Elements of Spinen) simply act as rotations 

g E. Spine n) 

Translations have the following effect 

Ad 
t 

(1 + \.te) \.eie j (1 - \ .. te) 

\'eie j + "l..(teie j - e 1 e j t)e 

For n ;0. 3 this confirms our identification 

of moto rs with elements of the Lie algebra. 

In thi s dimension we have the isomorphism 

h tE(3 ) ---

h(L
I2

) V3 

where [ v 1 ,v 2 .v 3 } 

+ cyclic h'( N.) 
3 1 

generates m. The 

is given by the dual vector product 

h([X,Y) h(X) " h(Y) 

Vi 

p roduct 

So the term \/l.(teeie j eiejte) above 

corresponds 

see [11. 

to the moment of the translation, 

Nex t co nsider the invariant bilinear 

symmetric forms on tile Lie algebra. In 
general we have a Lie .:llgebra £1' of a Lie 

group r. with [Xi 1 a basis for £r. Bilinear 

forms q. can be identified with matrices 

4 

and symmetric forms are matrices which 

satisfy Qij Qji' The set 

matrices has the structure of 

with dimension m - ~(d+l)d 

, call it Mats(m). 

of all these 

a v ec tor space 

where d - dim£J1 

The ad joi nt action of T' on iT' is linear 

and so can also be written as a matrix 

This induces the following action on Mats(m) 

the symmetric matrices 

....... Z (Ad 11' ) ki Q i j (Ad '6 ) j e 
ij 

,Qij E: Mats(m) I YeT' 

The action is linear so we have a 

representation of T' on The 

sub-vector space on which this representation 

acts trivially corresponds 

bilinear symmetric forms. 

to the invariant 

For SO(n) it is 

well known [8J that the only invariant form 

is the dot product . This is also, of course, 

the Killing form. 

Now when n&3 we have seen that we have 

tE(3 ) tSO(3)~ ID 

So that the adjoint representation of E(3) is 

jus t the "dualization" of the adjoint 

representation of su(3) that is the 

representation g iven by the principle of 

transference. Similarly it is clear that the 

representation of E(3) on Mat s (6)S!D is 

induced from the representation of SO(3) on 

Mat s (6) • The single real invariant form on 

{su(3 ) 

fE (3 ) , 

becomes a single dual invariant form on 

the dual dot product. Hence there are 

jus t two real invariant forms on tE(3), the 

scalar and dual parts of the dual dot 

product. 

for the 

Rather these two fo rms give a basis 

invariant 

2-dimensional 

forms oniE(3). 

vector space of 

The scalar part of 

the dual dot product is a multiple of the 

Killi n g form of E(3) 

is not semi-simple. 

degenerate since E(3) 

I 



That is, if r .. (aIVI+a2V2a3V3)+ 

£(blVl+bZVZ+b3V) 6 ££(3) 

then the two forms are 

The pitch p(r). of motor r is usually given 

as the ratio 

p( r) 

see [I J for example. However this suggests 

that for a motor with ql(r,r) = 0, the pitch 

is undefined. We prefer to think of the 

pitch as a 

space of 

rational map 

sc rews to 

from IPLE(3), 

IP IRI. given 

the 

in 

homogeneous co-ordinates by 

p( r) 

Now screws for which Q2(r,r) = U and ql(r,r) 

: 0 are in the closure of this map and their 

image is clearly the point ( 1 ,0) • 

pre-image of the point (0,1), 

O. 

the zero 

The 

pitch 

screws; satisfy This is 

familiar Klein quadric of lines in 

the 

IP IR 3 , 

recall that i.E(3) is a six dimensional 

vector space so 

IP IRS. 

IPi E( 3) is isomorphic to 

The proof that there are just two invariants 

on the space of screws is new. It has deep 

implications for the formulae one can use to 

describe physical screws and screw systems. 

The group 

50(3)(1)IR 3 • is 

of proper 

clea r ly of 

for spatial kinematics. 

Study's view and we 

Euclidean motions 

central importance 

This was certainly 

feel sure that a 

re-examination of his work in the light of 

modern developments in group theory and 

geometry would pay handsom dividends. 
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