
Technical Note 

Day-ahead forecasting of grid carbon 

intensity in support of HVAC plant 

demand response decision-making to 

reduce carbon emissions 

Gordon Lowry 

School of the Built Environment and Architecture,  

London South Bank University,  

London SE1 0AA, UK 

Email: gordon.lowry@lsbu.ac.uk 

 

 

Abstract 

Electrical HVAC loads in buildings are suitable candidates for use in demand response 

activity.  This paper demonstrates a method to support planned demand response actions 

intended explicitly to reduce carbon emissions.  Demand response is conventionally 

adopted to aid the operation of electricity grids and can lead to greater efficiency; here it 

is planned to target times of day when electricity is generated with high carbon intensity.   

Operators of HVAC plant and occupants of conditioned spaces can plan when to arrange 

shutdown of plant once they can foresee the opportune time of day for carbon saving.  It 

is shown that the carbon intensity of the mainland UK electricity grid varies markedly 

throughout the day, but that this tends to follow daily and weekly seasonal patterns.  To 

enable planning of demand response, 24-hour ahead forecast models of grid carbon 

intensity are developed that are not dependent on collecting multiple exogenous data sets.  

In forecasting half-hour periods of high carbon intensity either linear autoregressive or 

non-linear ANN models can be used, but a daily seasonal autoregressive model is shown 

to provide a 20% improvement in carbon reduction. 

Practical application 

The forecast method demonstrated in the paper would enable building operators to plan 

demand response activity to target times of high carbon intensity on the UK electricity 

grid.  The method would be easy to implement as the only data required is publicly 

available. 
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Introduction 

This paper sets out to demonstrate how, by developing a day-ahead forecast of the time-

varying carbon intensity of grid electricity, carbon saving from demand response can be 

increased.  The proposal is to help plan for electrical load reduction to coincide with high 

carbon intensity.  Electricity generation in the UK has been highly dependent on coal and 

oil for its main source of fuel, but these power plants are progressively being replaced by 

less carbon intensive fuels namely gas, nuclear and renewable energy sources like solar, 

hydro, wind and biomass.1  Such efforts may achieve the target of 80% reduction in CO2 

emission by 2050,2 but there are more immediate actions needed.  In situations where 

carbon emissions reductions are to be achieved from reducing electricity use, the relevant 

carbon intensity of the electricity is significant.  Ordinarily, total, national demand for 

electricity varies considerably diurnally and seasonally.  Typically, UK demand rises at 

the start of the working day reaching a plateau between 9:00 and 16:00, and rising again 

between 16:00 and 17:30 owing to lighting loads and increased domestic demand.3  

Seasonal variation is often weather dependent and UK demand tends to increase in the 

winter.  

Electricity is generated from a mixture of fuels.  For each fuel used in the UK 

there are published emissions factors quantifying the equivalent carbon dioxide emissions 

per unit of electricity (kg/kWh).  Individual generators with the same fuel may have 

different efficiencies so the factors are averaged for each fuel.  Over a long timescale in 

which generators are re-engineered or replaced these factors will slowly change but they 

change little over the time scales of interest in this paper.  The system-average carbon 

intensity can be calculated from a weighted sum of the emission factors for fuels 

according to their contribution to the mix.  As a result of variation in demand, the mixture 

of fuels used in generation continually varies, and so does the electricity carbon intensity. 

There has been some debate about how best to evaluate the relevant carbon 

intensity for particular forms of electricity demand reduction.4-6  In particular, noting that 

a reduction in energy use might change the proportion of fuels used since some plant will 

respond more readily to load change than others.  Thus, marginal factors can be estimated 

that attribute emissions reductions to particular demand reductions by predicting how this 

change would affect different generators.  How this should be done would depend on the 

timescales involved in the demand reduction. 

To quantify emissions reductions from policy developments effecting overall 

long-term change, one needs to consider how the mix of generators could be permanently 

altered, and relevant carbon intensity would be that of new generation plant not built or 

old plant decommissioned.7,8  Particular technological innovations might tend to 

concentrate demand reduction at certain times of day, and the intensity for implementing 

these may be calculated from an average for that time of day.5,6,9  For short-term 

measures, such as daily demand response actions, it has been suggested that the marginal 

intensity might be inferred from a knowledge of the merit order in which generators are 

dispatched.  Then, the last generator to be dispatched is assumed to be the one that 

reduces output as a result of the marginal demand reduction and, thus, its emission factor 



is taken to be the marginal grid carbon intensity.  Ascertaining the merit order is not 

straightforward, however, and must be estimated or inferred from historical data. 4,9-11  

Even if the merit order was known, this is not a realistic approach for larger systems 

where more than one type of generator might be dispatched at a time, and dispatch can be 

determined by other factors apart from merit order.12  Alternatively, instantaneous 

marginal values might be calculated from current grid activity.  The ratio of simultaneous 

changes in carbon emissions and changes in demand represent a marginal value, and have 

been used for a simple small system in Singapore.13  Unfortunately this would be 

misleading if the change in load distribution across generators changes for reasons other 

than demand.  This is likely in a larger system working with various operational 

constraints,14 and it could not then be known how to attribute a marginal change in 

demand to any particular generator.   

In this paper the concern is for immediate-term changes in load in single 

buildings, which are much smaller than the regular fluctuation in demand on generators, 

and thus making no discernible difference to the generation fuel mix.5 As calculating an 

appropriate marginal effect is not possible, the overall grid carbon intensity will be used 

rather than an instantaneous marginal value.  Of more importance here is that the precise 

time of the demand reduction is to be determined, at the risk of underestimating the 

emissions reductions.4 

Demand response (DR) is usually advocated for electricity grid management and 

entails electrical loads being disconnected at times determined by the grid operator or 

through pricing signals,15 and this may reduce and smooth demand.16  Large loads are 

required to satisfy DR contracts, so the processes are employed by large consumers, or 

aggregators that can ensure many smaller consumers act in concert.17  This also helps in 

managing voltage profiles on the network.18  Consumers who have agreed to support the 

network by reducing their electricity demand by a predefined amount, either switch off 

low priority loads or use embedded generation plant.19  Modifying the consumption 

pattern of electricity consumers could lead to emissions reductions if load is rescheduled 

to times to avoid the need to use generator plant with high emission factor.20  Suitable 

candidate loads in buildings for use in DR must be able to cease for limited periods 

without adversely affecting occupants or the activity in the building.  Electrical heating, 

ventilation and air-conditioning (HVAC) plant commonly installed in commercial 

buildings can exploit the thermal storage inherent in the building air and fabric, and 

permit suspended operation for short periods.21   In order to maintain acceptable internal 

conditions, the plant would have to make up the heating or cooling at other times with 

lower carbon intensity.   The net reduction in emissions would depend on the particular 

characteristics of the plant and building, as would the acceptable duration of any 

cessation in plant operation.  The particular response of a system identified for DR would 

need to be trialed on-site. 

Outside of formal contractual arrangements for DR, any organisation might elect 

to reduce load locally.  This might be implemented as part of a number of measures to 

reduce carbon emissions, but DR would provide an immediate effect.  To reduce 

emissions this should be done at a time when the grid electricity is generated from the 

most carbon-intensive fuels.  Services are currently offered that track the instantaneous 



carbon intensity for making immediate power use decisions.22,23  However, for most 

business users there would be a need to plan ahead for the DR event each day, and the 

intention of this paper is to demonstrate a method to support the decision making 24 

hours ahead.  Values of average carbon intensity for the UK grid are published for carbon 

auditing purposes24 but these data do not consider the daily variation resulting from the 

continual change in fuel mix used for electricity generation.  Instead, a predictive model 

is proposed to forecast peaks in the carbon intensity a day ahead.   

Forecasting Methods 

The usual objective for modelling grid activity is to forecast demand, and various 

methods have been demonstrated that could be candidates for forecasting the 

corresponding carbon intensity time series.  There are numerous load forecasting 

techniques recommended 25-28 that are based on different requirements, and complexities, 

but many require input data not readily available. 

Grey models proposed by Deng29 have been used for very short-term demand 

forecasts30 and longer term forecasting of carbon emissions.31  Grey modelling allows for 

a small number of steps ahead but uses little historical data.  Grey theory has been widely 

used in forecasting studies because of its higher forecasting accuracy when compared 

with other forecasting techniques32-34 but it is most effective with monotonically varying 

time series. 

Autoregressive integrated moving average (ARIMA) models have been 

extensively used in forecasting because few assumptions need to be made.35  Non-linear 

autoregressive models with exogenous input (NARX) have been shown to perform well, 

at least with one-step ahead forecasts.36  Artificial neural networks (ANN) have been 

extensively studied and used in time-series forecasting.  The major advantage of neural 

networks is their flexible non-linear modelling capability. Artificial neural networks 

(ANN) have been used with hourly37 and monthly38.39 data.   They have also been used to 

examine the energy use in buildings.40  Scenarios of future carbon emissions per unit 

GDP have been explored using ANN.41  However, any superiority of ANN-based 

methods over linear methods are usually demonstrated in very short-term forecasting, e.g. 

one-step ahead.  The challenge in this paper is to achieve 24-hour ahead forecasting on 

half-hourly data, thus 48-step ahead. 

Grid demand forecasting will typically rely on the availability of exogenous 

inputs, such as weather forecasts.  For individual buildings, temperature data have been 

used to aid dispatch decision-making for the use of combined heat and power plant.42  

There may be a number of time-varying drivers that influence the grid carbon intensity, 

and whose inclusion should improve the predictive power of any model.  Critically, the 

building operator is unlikely to have access to current data for these, and the proposal is 

to ascertain the extent to which sufficient useful information might be extracted from the 

carbon intensity time series alone.  There is freely available several years’ worth of data 

on the demand and fuel mix used for the mainland UK grid, e.g. Gridwatch,43 and this 

will be modelled using the ANN and autoregressive approaches that have worked well in 

demand forecasting. 



Sources of grid carbon intensity data 

Data for the mainland UK grid carbon intensity can be calculated from the data published 

by Gridwatch43 derived from the UK Balancing Mechanism Reporting Service.  These 

data include the five-minute average for electricity demand in GW, and how this is 

distributed across the major fuels used in the UK.  For individual fuels, their carbon 

emission factors are available44 as shown in Table 1, and can be used to ascertain the 

overall carbon intensity for each time interval.  For this study, the large number of small 

contributions from transnational interconnectors and unmetered renewable sources have 

not been allowed for.  Currently these represent only a small proportion of the total and 

determining emission factors for these would be unreliable and therefore carbon intensity 

is calculated without these. 

 

Fuel carbon emission factors  

(kgCO2/kWh) 

COAL 0.870 

NUCLEAR 0.016 

WIND 0.011 

GAS (combined cycle) 0.487 

GAS (open cycle) 0.651 

HYDRO 0.020 

OIL 0.650 

 

Table 1.  Carbon emission factors for electricity generated from specific fuels44 

For this study, data were downloaded for the period 29 May 2011 to 22 January 

2018.  These data are at 5-minute intervals and comprise almost 700 000 time steps.  In 

order to reduce the data processing time these were aggregated into half-hourly data.  The 

half-hourly carbon intensity was calculated using the weighted sum of carbon emission 

factors from Table 1 and this time series is shown in Fig. 1.  Half-hourly data is the time 

resolution commonly used for electricity data, and represents a sensible delay before 

restarting HVAC plant that has been shut down as a demand response.  Missing data 

values were estimated using linear interpolation.  This left a time series of more than 

110 000 values, sufficient for the training of an artificial neural network.  This data 

sequence was then partitioned to allow the data from 1 July 2017 to the end to be held 

back for model validation.  This captured a half-year incorporating summer and winter 

grid demand variation. 



 

 

 

 

Fig.1. Mainland UK grid carbon intensity (kg/kWh) 

 

Forecast modelling 

It might be expected that carbon intensity would be related closely to the demand on the 

grid as the least efficient generators should be last to be dispatched.  Fig. 2 shows how in 

one week carbon intensity is associated with demand, but that peak carbon intensity does 

not necessarily coincide with peak demand, so even if demand were perfectly predictable 

this would be inadequate for predicting carbon intensity peaks.  The Pearson correlation 

coefficient between demand and carbon intensity for the whole data set is only 0.66, and 

thus carbon intensity warrants its own independent modelling. 

 



 

 

Fig. 2.  Demand and carbon intensity for one week in February 2017 

Initial inspection of the data indicates diurnal and weekly seasonality.  A Fourier 

analysis of the dataset, comprising 2097 days or almost 300 weeks of data is shown in 

Fig. 3.  Peak values occur at 2097 and 300 cycles per data-set length, i.e. daily and 

weekly cycles respectively.  Therefore models can be expected to exploit the daily and 

weekly periodicity for forecasting. 

 

Fig. 3.  Fourier transform of carbon intensity time series 

In selecting the best model to fit the data, the criteria used was root mean squared 

error (RMSE).  The intended model evolution process is to fit a linear autoregressive 

(AR) model to ascertain how much historical data is valuable in the predictive model.  



Then this level of detail is applied to a non-linear autoregressive model that uses a 

recurrent ANN.  Finally, the merit of possible models is tested using the held back data, 

in terms of how effectively the timing of high values of carbon intensity can be forecast 

24 hours ahead.  Assuming this model is used to determine the timing of DR events, 

whether this improves carbon saving for a demand response process is evaluated. 

ARIMA 

Following Box et al,35 the ARIMA model takes the form shown in equation (1): 
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where B is the backshift operator and lower and uppercase functions are polynomials for 

the lagged and seasonally lagged time series values, respectively, and μ is the series 

mean.  The parameters p, d, and q, and for seasonality of order s the parameters P, D and 

Q, determine the model structure.  This is conventionally denoted (p, d, q)(P, D, Q)s.  As 

can be seen from Fig. 1 the whole data series is not stationary, with a long-term 

downward trend illustrating the progressive grid decarbonisation.  In order to fit ARIMA 

models, the time series should be stationary, which is conventionally achieved by 

differencing the data.  However, in order to expose the autoregressive components that 

would be useful in the recurrent ANN model, a shorter data set (1 July 2016 to 30 June 

2017) that is roughly stationary was used to estimate AR models.  The moving average 

(MA) was not included in the model as the error values would not be known in time in 

the 48-step ahead forecasting.  Therefore, in this study, parameters d and D were set to 

zero, and polynomials  and  were set to unity.  The model parameters were identified 

using the proprietary software package SPSS v.21.  The model residuals were examined 

for autocorrelation and the model orders, p and P, were increased to remove any 

statistically significant residual autocorrelation.   

 

Diurnal seasonal model 
Initially, the autocorrelation (ACF) and partial autocorrelation functions (PACF) were 

examined, and the PACF showed large values for one and two lags and then weaker 

correlation around 48 lags.  Thus, initially, the data were analysed with diurnal seasonal 

models, using two lagged values.  Examination of the residual PACF showed significant 

correlation at additional lags, but these reduced significantly once the number of lags 

specified in the AR model was increased to four, including the seasonal autoregression.  

The model selected was then (4,0,0)(4,0,0)48 with RMSE = 0.005.  For this model, the 

autoregressive coefficients (φn), the diurnal seasonal coefficients (Φn) and the mean (μ) 

are shown in Table 2.  This model was then used with the held back data to attempt 

forecasting 48-steps.  That is to say, the first to fourth lagged values were those 

previously predicted, but for the seasonal lagged inputs, being at least 24 hours old, 

actual values were used.  Then forecast data 48 steps ahead is given by: 
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This resulted in RMSE = 0.058.  An example of the fit for a 10-day sequence is 

shown in Fig. 4. 



 

 

Fig. 4.  Example plot for model (4,0,0)(4,0,0)48 

Weekly seasonal model 

As there was evidence from the Fourier plot and the PACF of weekly seasonality, 

and demand patterns change at weekends, alternative AR models were tried using weekly 

seasonality, again using the one year’s data set.  The PACF showed significant 

correlation for up to two lags and weaker correlation at a week’s lag, i.e. a lag of 336.  

Thus, models with two lags and varying degrees of seasonal lag were investigated and of 

these the model having the best fit was (2,0,0)(5,0,0)336 with RMSE = 0.005.  So, despite 

the weaker partial autocorrelation for weekly then diurnal lags, the weekly seasonal 

model fits as well as the diurnal.  The coefficients are shown in Table 2.  Again this 

model was used for forecasting the held back data, with RMSE = 0.066.  The sequence 

was shorter as there was a need for a larger number of initial values to begin the forecast, 

and an example of the fit is shown in Fig. 5.   



 

 

Fig. 5.  Example plot for model (2,0,0)(5,0,0)336 

 

Model (4,0,0)(4,0,0)48 Model (2,0,0)(5,0,0)336 

μ 0.319 μ 0.311 

φ1 1.529 φ1 1.485 

φ2 -0.571 φ2 -0.493 

φ3 0.082 Φ1 0.233 

φ4 -0.050 Φ2 0.156 

Φ1 0.266 Φ3 0.142 

Φ2 0.153 Φ4 0.111 

Φ3 0.131 Φ5 0.109 

Φ4 0.136   

Note:  all significant p <0.0005 

 

Table 2.  Autoregressive model coefficients 



Non-linear ANN model 

The ARIMA modelling results suggest that ANN model might need to consider day-old 

data and week-old data up to 5 lags.  Therefore these were included in the recurrent ANN 

model specification.    The ANN model used was a three-layered network with sigmoid 

activation function g in the hidden layer, and a linear transfer function in the output layer, 

and this was implemented in Matlab v.9.1.   The hidden layer had five neurons for which 

vih ( i = 0,1,2,.,p, h = 1,2,.,5) are the synaptic weights for the connections between the p-

sized input and the hidden layer, and wh (h = 0,1,2,.,5) are the synaptic weights for the 

connections between the hidden and the output layer.  The output of the neural network 

from a vector of inputs (x1,.,xp) is: 
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The input vector comprised previously estimated values of output up to 5 lags and 

then combinations of daily and weekly lagged actual values.  The models with various 

combinations of inputs were trained on the original data set without the held back data.  

The models were then tested by forecasting 48-steps ahead on the held back data.  For 

this forecasting, the ANN was used in closed-loop form so that data values lagged less 

than 48 steps were used as recurrent inputs.  For lags greater than 48, actual data values 

were used as ‘independent’ inputs as actual historical values would be known to the user 

seeking to forecast 24 hours ahead.  Candidates for use in testing on the held back data 

were shortlisted by RMSE.  The best fit model had lags in the ranges 1 – 4, 48 – 52, 96 – 

100 and 336 – 340, thus retaining some of the diurnal and weekly dependence seen in the 

AR models with an estimated RMSE = 0.056.  This appears in this incidence to fit 

marginally better than the best AR model.  An example of the fit over a ten-day period 

within the held back data set is shown in Fig. 6.  As there is only a small difference in fit, 

there is no justification for favouring one modelling method. 

 



  

Fig. 6.  Example plot using best fitting ANN model 

 

Results for carbon saving 

The models selected so far by their fit to the data were then tested for success at 

predicting high carbon intensity.  To test the power of the different models, they were 

used to forecast 24 hours and thus identify the half hour in which peak carbon intensity 

was forecast to occur.  In many cases this did not exactly coincide with the actual peak, 

as might be expected from the Figs. 4-6.  However, a high carbon intensity half hour 

would still have been identified if the peak was forecast one step either side of the actual 

peak, as the carbon intensity does not change rapidly from one half hour to the next.  As a 

benchmark, one might consider half-hour periods selected at random or the use of a naïve 

predictor that simply assumes the next 24 hours of data will be identical to the previous 

24 hours.  Thus a random choice would have a one in 16, or probability of 0.06, of 

coinciding with the actual peak or one step either side.  The rates of success for the 

models are shown in Table 3, which shows no differentiation between modelling 

methods. 

 

model rate of predicting the peak in 24 hours ahead 
+/- one step 

RMSE 

 Random choice 0.06  

 Naïve predictor 0.19 0.060 



AR (400)(400)48 0.25 0.058 

AR (200)(500)336 0.25 0.066 

ANN 1-4, 48-52, 96-100, 336-
340 

0.25 
0.056 

 

Table 3. Rates of success in forecasting high carbon intensity 

Finally, the success of these two models was assessed by calculating the carbon 

saving achieved by DR determined by the model’s forecast of peak carbon intensity.  

This was calculated as the average carbon intensity of the selected half hour periods over 

the forecasting period.  This can be compared with the average carbon intensity over the 

same period, and the ratio expressed as an ‘improvement factor’.  This period was of 

different length for the different models because of the different quantity of initial values 

each model needed.  The results are shown in Table 4. 

 

Best model 

carbon intensity (kg/kWh) 
improvement 
factor period 

average 
average 
saved 

AR (400)(400)48 fig 4 0.298 0.358 1.20 

AR 
  

(200)(500)336 fig 5 0.303 0.349 1.15 

ANN 1-4, 48-52, 96-100, 336-
340 

0.296 0.320 1.08 

 

Table 4.  Carbon saving results for selected models 

 

Conclusion 

The use of demand response is conventionally motivated by pricing signals whereby the 

cost benefits of improved operation of the electricity grid are shared with consumers.  In 

this paper it has been shown that DR activity may be undertaken to reduce carbon 

emissions directly.   This use of DR may not provide the immediate commercial reward 

but could be attractive to consumers valuing short-term impact on carbon emissions.  



Many buildings use HVAC plant, which present useful loads for use in DR.  It is to be 

expected that switching plant off needs to be planned for and, therefore, advanced 

warning of high carbon intensity would be useful.  It has been shown that grid carbon 

intensity exhibits a periodicity, and this can be exploited to develop forecast models.  The 

variation in carbon intensity can be forecast using linear autoregressive models or non-

linear ANN models.  The models that best fit the time series are not necessarily best for 

selecting when high carbon intensity is expected to occur.  The modelling methods are 

accessible to individual building operators as no exogenous data are used, but only data 

in the public domain.  Using the linear diurnally seasonal AR model to determine the 

timing of DR can achieve an improvement in carbon emissions reduction of 20%.  In 

systems where the HVAC system load is displaced in time, the net reduction would also 

depend on the carbon intensity at the new operating time.  This is a tool for short-term 

gain: increased use of DR and grid decarbonisation in the future should eventually 

change the pattern of daily fluctuation and reduce the incidence of high carbon intensity. 
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