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A B S T R A C T   

Background and objective: Intracranial aneurysms are relatively common life-threatening diseases, and assessing 
aneurysm rupture risk and identifying the associated risk factors is essential. Parameters such as the Oscillatory 
Shear Index, Pressure Loss Coefficient, and Wall Shear Stress are reliable indicators of intracranial aneurysm 
development and rupture risk, but aneurysm surface irregular pulsation has also received attention in aneurysm 
rupture risk assessment. 
Methods: The present paper proposed a new approach to estimate aneurysm surface deformation. This method 
transforms the estimation of aneurysm surface deformation into a constrained optimization problem, which 
minimizes the error between the displacement estimated by the model and the sparse data point displacements 
from the four-dimensional CT angiography (4D-CTA) imaging data. 
Results: The effect of the number of sparse data points on the results has been discussed in both simulation and 
experimental results, and it shows that the proposed method can accurately estimate the surface deformation of 
intracranial aneurysms when using sufficient sparse data points. 
Conclusions: Due to a potential association between aneurysm rupture and surface irregular pulsation, the esti-
mation of aneurysm surface deformation is needed. This paper proposed a method based on 4D-CTA imaging 
data, offering a novel solution for the estimation of intracranial aneurysm surface deformation.   

1. Introduction 

Intracranial aneurysms (IAs) are characterized by deterioration of 
the local structure of the arterial wall, loss of the internal elastic layer 
and interruption of the media, and it occurs in 3% to 5% of the general 
population, which is estimated to be 6 million people in the United 
States [1]. The annual rate of IAs rupture varies from 0.1% to 1.4%, 
according to relevant surveys [2,3]. Even though the overall rupture rate 
of IAs is relatively small, the rupture of IAs is a catastrophic event. The 
mortality rate of IAs rupture is 32% to 67%, and one-third of survivors 
have serious complications [4]. Therefore, the rupture risk assessment of 

IAs is a crucial consideration, and it is critical to examine and analyze 
aneurysms using patient-specific data. 

Due to the significant health risks associated with aneurysm rupture, 
several risk factors have been well studied: age, family history, smoking, 
hypertension, and aneurysm size and location. These factors are used in 
aneurysm risk assessment and treatment strategies, such as the PHASES 
scoring system, which includes population, hypertension, age, size of the 
aneurysm, and early subarachnoid haemorrhage [5]. However, risk as-
sessments based on these population-based data only achieve moderate 
accuracy. Although the treatment threshold is commonly 7 mm, many 
ruptured IAs are smaller than 7 mm [6]. Therefore, researchers have 
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examined other quantifiable parameters and imaging information to 
allow for more patient-specific stratification of IA rupture risk. 

Many research efforts have investigated the biomechanical param-
eters for IAs rupture risk assessment. Computational fluid dynamic 
(CFD) is a typical method to analyze patient-specific hemodynamic 
parameters [7,8]. These simulations consider factors such as the size and 
shape of the aneurysm, the velocity and pressure of the blood flow, and 
the properties of the blood itself [9]. It analyses the factors that are 
related to aneurysm growth and rupture, such as the Oscillatory Shear 
Index (OSI), Pressure Loss Coefficient (PLc) and Wall Shear Stress (WSS), 
which have been identified as an indicator of development and rupture 
risk for aneurysm [10,11]. It has been shown that the WSS within an IA 
is influenced by the geometry of the aneurysm, the velocity of the blood 
flow, and the pressure gradients within the aneurysm. These haemo-
dynamic parameters have been shown to cause stress on the aneurysm 
wall, leading to deformation and growth over time. Among them, the 
WSS parameter has been of great interest, and these extensive studies 
demonstrated a correlation between WSS and aneurysm rupture 
[12–15]. 

Aneurysm wall thickness and mechanical properties have also 
received attention in aneurysm studies [16,17]; therefore, aneurysms 
have been studied using fluid-structure interaction (FSI), where the FSI 
analysis assumes that the vessel is deformable [18,19], and FSI can be 
realized using 1-way or 2-way couplings, and the FSI analysis results 
show that the equivalent strains were higher in ruptured aneurysms than 
unruptured aneurysms [20]. FSI has also been used in patient-specific 

models to study the risk of aneurysm rupture associated with trau-
matic brain injury (TBI) [21]. In addition to hemodynamic parameters, 
the aneurysm wall deformation has also received attention for aneurysm 
rupture risk assessment, and it has been shown that inhomogeneous 
mechanical features and abnormal wall motion are often associated with 
IAs symptoms, growth and rupture [22,23]. More in-depth studies have 
shown subjective parameters of irregular wall motion and deformation 
in growing or ruptured IA, such as irregular pulsation and pulsating 
haemorrhage. For example, a study has shown that intracranial aneu-
rysms that exhibit irregular wall pulsation are more likely to rupture 
than those with regular wall pulsation [24]. In addition, the degree of 
irregular pulsation positively correlates with the risk of rupture [25]. 

As irregular pulsation of aneurysms may be a potential parameter for 
assessing the risk of rupture, some research efforts have focused on the 
estimation of aneurysm surface deformation. Since the deformation of 
the aneurysm is very small, any rigid motion must be fully compensated 
for to have an accurate estimate [26]. Due to the small deformation of 
IAs, optical flow (OF) methods are applied to image registration (IR) 
[27] because these methods are very suitable for recovering a small 
magnitude of displacement in the image [28]. However, OF methods are 
sensitive to intensity variations due to noise and inhomogeneity of 
contrast distribution and can lead to an unsmooth final deformation 
field [29]. Dynamic cardiac gated magnetic resonance angiography 
(MRA) and computed tomography angiography (CTA) have been used to 
estimate IAs wall motion with some success [30–32]. However, IA sur-
face motion has proven difficult to quantify with conventional imaging 

Fig. 1. The cubic model: (a) The original model; (b) FEA deformation result; (c) The original point cloud; (d) The deformed point cloud; (e) The contrast plot; (f) The 
front view of the contrast plot. 
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Fig. 2. The constrained estimated results by using the different number of sparse data points: (a) The sparse data points (red) on the surface; (b) The estimation result 
(blue) compares with the FEA result (red); (c) The front view of estimation result; (d) The colourmap of the estimation result. 

H. Xie et al.                                                                                                                                                                                                                                      



Computer Methods and Programs in Biomedicine 244 (2024) 107975

4

techniques due to the small size and limited spatial resolution of IAs. 
Three-dimensional reconstruction of aneurysms is critical for deforma-
tion estimation [33–35]. Some investigators recovered aneurysm pul-
sation by deforming the volume rendered by three-dimensional 
rotational angiography (3D-RA) and have compared the constructed 
volume projections to match the 2D image data set used for volume 

reconstruction [36]. However, this method has only been tested with 
phantom data and not validated using patient-specific data. Nowadays, 
4D-CTA is becoming increasingly popular as a novel imaging technique 
in the evaluation of IAs. These scans provide a series of images of the 
aneurysm over time, allowing visualization of changes in size and shape. 
However, the identification of irregular pulsations is currently carried 
out through manual evaluation. In previous studies [23,37], three 
experienced neuroradiologists with 6 years of expertise in neurovascular 
CTA diagnosis independently assessed the presence of irregular pulsa-
tions while maintaining patient confidentiality and utilizing 
three-dimensional rotational angiographic images. In instances where a 
focal aneurysmal protuberance was identified within an aneurysm, the 
reviewers measured the maximum perpendicular height of this protu-
berance, deeming irregular pulsations present when at least three 
consecutive frames exhibited a focal aneurysmal protuberance (≥ 1mm). 
It’s worth noting that this manual process may introduce discrepancies 

Table 1 
Statistical error analysis of constrained estimation by using different numbers of 
sparse data points.  

Nsprss Mean Square Error Mean Absolute Error Root Mean Square Deviation 

1 2.2185 0.9920 1.4895 
4 0.0539 0.1501 0.2322 
10 0.0143 0.0658 0.1199 
50 0.0028 0.0204 0.0530 
100 0.0007 0.0095 0.0279  

Fig. 3. Segmentation procedure for constructing patient-specific intracranial aneurysm 3D models using 4D-CTA imaging data.  

Fig. 4. The patient-specific intracranial aneurysm model with surface mesh in different angles of view at phase 1.  
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attributable to human factors, and accurate estimation of aneurysm 
surface deformation can help clinicians identify irregular pulsations in 
aneurysms. Therefore, the primary objective of this study is to conduct 
deformation estimation of the aneurysm surface utilizing 4D-CTA image 
data [38]. 

In this paper, a novel method is proposed for the estimation of 
aneurysm surface deformation. The technique transforms the estimation 
problem into a constrained optimization problem, wherein the defor-
mation of the aneurysm surface is estimated under the constrained 
optimization problem. This approach is based on a finite element 
deformation model, which employs an optimal constrained estimate of 
the mechanical deformation of the aneurysm surface, utilizing the 
sparsely collected local surface displacement data points. Simulation 
and experimental results demonstrate the efficacy of the proposed 
method in estimating aneurysm surface deformation. 

2. Methods 

2.1. Problem definition 

Due to the complex structure and composition of the aneurysm, the 
wall deformation of the IAs exhibits a complex mechanical behaviour. 
However, the linear elasticity theory can accurately represent the me-
chanical deformation of soft tissues in a short period. Biological soft 
tissues exhibit linear elasticity at <15% of strain conditions [39]. Also, 
the deformation of the IA wall is very small compared to the size of the 
aneurysm, so the deformation of the IA wall can be assumed to be lin-
early elastic [40]. 

The strain energy function of the IA wall can be defined as 

Estrain =
1
2

∫

Ω

εTσdΩ (1) 

Where ε represents the strain tensor, σ represents the stress tensor, 
and Ω represents the solution domain. 

The stress tensor σ can be defined as 

σ = Dε (2) 

Where D is the material matrix, including Young’s modulus E and 
Poisson’s ratio v. 

The strain tensor ε can be defined as 

ε = BU (3) 

Where B represents the strain-displacement matrix, and U represents 
the nodal displacement in the solution domain of IA wall deformation. 

For the static equilibrium system, the external force F equal to the 
internal force R as follows 

R − F = 0 (4) 

Under finite element formulation, the internal force R can be ob-
tained by 

R = KU (5) 

Where K is the stiffness matrix that embeds the discretized model 
equations, and the displacement U needs to be determined to construct 
the IAs wall deformation. 

In this paper, we formulate the aneurysm surface deformation 
problem as a constrained estimation problem, i.e., the full nodal 
displacement U must reasonably match the sparse data points y which 
are measured from the aneurysm local surface. These sparse data points 
can be obtained by various imaging techniques, such as CTA and MRI 
[41]. Therefore, the IAs wall deformation model described by Eq. (5) is 
subject to the constraint as follows 

y = HU (6) 

Fig. 5. The estimation results obtained by the CPD method.  
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Where H is the sampling matrix that maps the sparse data points y to 
the estimated solution U. 

From Eq. (4), we can have 

U = K− 1R (7) 

Then, denoting the estimated U by Ũ and estimated R by R̃, the Eq. 
(6) and (7) can be rewritten as 

ỹ = HŨ (8)  

Ũ = K− 1R̃ (9) 

Since R̃ is unknown, it is not possible to use Eq. (9) to calculate Ũ, so 
it is reasonable first to estimate R̃, then use the estimated R̃ to obtain Ũ. 

2.2. Constrained estimation 

The model data misfit ε can be obtained by Eq. (8) and (9) as follows 

ϵ = y − ỹ = y − HK− 1R̃ (10) 

The objective is to minimize the model data misfit ε between the 
model estimated. Ũ and measured sparse data points y. 

By optimal the minimization process of ε, the Eq. (10) can be written 
as 

y = HK− 1R̃ (11) 

Thus, the minimization problem can be defined as 
argminE[(R − R̃)T

(R − R̃)]

s.t. y = HK− 1R̃ (12) 

Where E[ ⋅ ] stands the expectation. 

From Eq. (12), we can derive the objective cost function as follows 

J = E
[
(R − R̃)T

(R − R̃)
]
+ 2λT( y − HK− 1R̃

)
(13) 

Where λ stands the Lagrange multiplier. 
By expanding Eq. (13), we can have 

J =

∫

(R − R̃)T
(R − R̃)f(R)dR + 2λT( y − HK− 1R̃

)

=

∫

RTRf (R)dR − 2
∫

R̃
T
Rf (R)dR + R̃

T
R̃ + 2λT( y − HK− 1R̃

)

=

∫

RTRf (R)dR − 2R̃
T
∫

Rf (R)dR + R̃
T
R̃ + 2λT( y − HK− 1R̃

)

(14)  

where f(R) is the conditional probability density function of R. 
The conditional mean of R can be expressed as 

R =

∫

Rf (R)dR (15) 

Substituting Eq. (15) into Eq. (14) yields 

J =

∫

RTRf (R)dR − 2R̃
T
R + R̃

T
R̃ + 2λT( y − HK− 1R̃

)
(16) 

By taking the partial derivatives of Eq. (16) with respect to R̃ and λ 
and letting them equal to zero, we can have 

dJ
dR̃

= − 2R + 2R̃ − 2
(
HK− 1)Tλ = 0 (17)  

dJ
dλ

= 2
(
y − HK− 1R̃

)
= 0 (18) 

Rearrange Eq. (17), we can have 

Fig. 6. The estimation results using 10 sparse data points: the first plot shows the sparse data points on the surface, and the remaining plots show the surface 
displacements with the first phase as a reference, for example, the estimated surface deformation from phase 1 to phase 2 are plotted as (1-2). 
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Fig. 7. The estimation results using 300 sparse data points.  

Fig. 8. The estimation results using 600 sparse data points.  
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R̃ = R +
(
HK− 1)Tλ (19) 

Multiplying both sides of Eq. (19) by HK− 1 to obtain 

HK− 1 R̃ = HK− 1 R + HK− 1 (
HK− 1)Tλ (20) 

Substituting Eq. (20) into Eq. (18) yields 

2
(

y − HK− 1R − HK− 1( HK− 1)Tλ
)
= 0 (21) 

From Eq. (21), we can obtain λ as follows 

λ =
(

HK− 1( HK− 1)T
)− 1(

y − HK− 1R
)

(22) 

By substituting λ into Eq. (19) to obtain 

R̃ = R +
(
HK− 1)T

(
HK− 1( HK− 1)T

)− 1(
y − HK− 1R

)
(23) 

Rewrite Eq. (23) into recursive form 

R̃k+1 = R̃k +
(
HK− 1)T

(
HK− 1( HK− 1)T

)− 1(
yk − HK− 1R̃k

)
(24) 

Where R̃0 = R and k is the iteration number. 
According to Eq. (9), multiplying both sides of Eq. (24) by K− 1, we 

can have 

Ũk+1 = Ũk + L(yk − HŨk) (25) 

Fig. 9. Boxplot of the displacement at each phase by using the different number of sparse data points: (a) 10 sparse data points; (b) 300 sparse data points; (c) 600 
sparse data points; (d) The CPD estimation. 

Table 2 
Statistical error analysis of constrained estimation by using different numbers of 
sparse data points.  

Nsprs Mean Square Error Mean Absolute Error Root Mean Square Deviation 

10 0.01502 0.09256 0.12211 
50 0.00698 0.06073 0.08337 
100 0.00526 0.04993 0.07232 
200 0.00306 0.03628 0.05518 
300 0.00283 0.03203 0.05300 
400 0.00242 0.02832 0.04900 
500 0.00218 0.02501 0.04648 
600 0.00210 0.02302 0.04559  
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Where 

L = K− 1( HK− 1)T
(

HK− 1( HK− 1)T
)− 1

(26) 

Therefore, the estimation of aneurysm surface deformation can be 
summarised into the following steps: 

(i) Set Ũ0 for the initial condition, 
(ii) Calculate the matrix L, 
(iii) For each iteration,  

• Conduct constrained estimation using (25). 

3. Results 

Simulations and practical experimental analyses are carried out to 
validate the proposed constrained estimation method. Firstly, we 
simulate a simple cubic model intending to demonstrate the feasibility of 
the proposed method. We discussed the effect of the number of sparse 
data points on the constrained estimation results and compared it with 

finite element analysis (FEA) reference results. We then performed a 
constrained estimation of the intracranial aneurysm model based on 
patient-specific 4D-CTA imaging. Then we compared it with the well- 
known point set registration technique, coherent point drift (CPD) 
[42]. Finally, we performed an experimental analysis to validate the 
proposed method further. In the experimental study, we performed 
compression tests on a cubic model made of silica gel, and the sparse 
data point displacements on the cube’s surface were obtained by an 
optical coherence tomography (OCT) imaging system and used for 
constrained estimation. A FEA was then performed and validated against 
the constrained estimation results. 

3.1. Cubic model 

Consider the deformation on a simple cubic model, as shown in Fig. 1 
(a). This cubic model is 10cm × 10cm × 10cm, uniformly meshed with 
386 surface nodes, and material properties of the cubic sample are 0.2 
for the Poisson’s ratio and 3000Pa for the Young’s modulus. The cubic 
model is fixed at the bottom and compressed on its left side to generate 
the deformation using FEA. The FEA deformation result will be used as a 
data set and reference value for constrained estimation. Fig. 1(b) shows 
the FEA deformation result, which will be used as a reference value and 
Fig. 1(c) shows the surface point cloud. The deformed point cloud is 
shown in Fig. 1(d), and the compression between the original point 
cloud (blue) and the deformed point cloud (red) has been demonstrated 
in Fig. 1 (e) and the front view in Fig. 1(f). 

The simulation process was carried out by matching blue points to 
red points using constrained estimation and then comparing them to the 
FEA reference values. Fig. 2 shows the results of the constrained esti-
mation by using different numbers of sparse data points. Fig. 2(a) shows 
the sparse data points on the surface (red), Fig. 2(b) and (c) shows the 
estimated results (blue) compared to the FEA results (red), and Fig. 2(d) 
shows a colour map of the estimated results. As the number of sparse 
data points increases, the displacement field approaches the reference 
results obtained from FEA simulations. In Fig. 2, the estimation result 
using only one sparse point inadequately captured the deformation 
distribution of the cubic surface compared to the FEA reference solution 
shown in Fig. 1(e) and (f). In Fig. 2, when we use four vertices as sparse 
data points, we find that the accuracy of the constrained estimation is 
greatly improved because these four vertices can represent the topo-
logical features of the cubic model, which indicates that the proposed 
method can significantly improve the accuracy of the estimation when 
the structural features of the model can be traced. In Fig. 2, when we 

Fig. 10. Volume (mm3)change in different phases: (a) volume change; (b) volume change percentage.  

H. Xie et al.                                                                                                                                                                                                                                      



Computer Methods and Programs in Biomedicine 244 (2024) 107975

10

increase the number of sparse data points to 50, the constrained esti-
mates are already very close to the results of the FEA in Fig. 1(e) and (f). 
When 100 sparse data points are used, the constrained estimation results 
are almost identical to those of the FEA. We can see no significant visual 
difference between the colourmap plot estimated using 50 and 100 
sparse data points and the FEA reference result in Fig. 1(b). This trend 
can also be seen in the statistical errors in Table 1, where we can see that 
the errors decrease as the number of sparse data points increases, with 
sufficient accuracy being reached when 50 sparse data points are used. 

3.2. Intracranial aneurysm model 

3.2.1. Simulation procedures 
The intracranial aneurysm model used in this study was constructed 

from patient-specific imaging data obtained from the Renji Hospital, 
Shanghai, China, from existing databases and was approached and 

conducted in accordance with the guidelines and regulations established 
by the Queensland University of Technology Human Research Ethics 
Committee (Project Reference ID: 2022-6108-10078), and written 
informed consent was obtained from all participants before their in-
clusion in the study. The proposed method requires data processing. 
Since the method is based on 4D-CTA image data for displacement 
estimation, segmentation of the 4D-CTA image data is needed before 
constrained estimation to obtain all three-dimensional models of the 
aneurysm during the cardiac cycle. 

A 320-detector row CT scanner (Aquilion ONE VISION, Canon 
Medical System Corporation, Otawara, Japan) was used to scan the 
cerebral arteries with a prospective ECG-gated scan mode performed 
during one cardiac cycle. The spatial resolution of the 4D-CTA data is 
0.31 × 0.31 × 0.5 mm3. The 4D-CTA scans were performed during one 
cardiac cycle using a prospective ECG-gated scanning mode, and the 
reconstruction included 20 phases of R-R interval from 0% to 95% every 

Fig. 11. (a) The experiment setup; (b) The cubic model utilized in the simulation was subjected to the same boundary conditions as the experimental setup. The 
bottom surface (y = 0mm) was assumed to be fixed, while the top surface (y = 20mm) was compressed and scanning region in blue; (c) The front view of the 
cubic model. 
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Fig. 12. The simulation results were obtained by (a) Reference solution; (b) Constrained estimation. The front view of the cubic model modelling results obtained by 
(a) Reference solution; (b) Constrained estimation. 

Fig. 13. The deformation field for the scanning region: (a) DVC result; (b) Reference solution; (c) Constrained estimation.  
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5% cardiac cycle, and the detailed protocol can be found in previous 
publication [37]. Fig.. 3 shows the segmentation procedure for con-
structing patient-specific intracranial aneurysm 3D models using 
4D-CTA imaging data, and the size of this patient’s aneurysm is 14 mm. 
These 20 phases are generated from one cardiac cycle with an elapsed 
time of around 1 second. After obtaining the 3D model of the aneurysm 
based on the 4D-CTA imaging data, the aneurysm was reduced to only 
the region of interest. The phase 1 model was meshed into 5815 surface 
nodes, as shown in Fig. 4. The patient-specific intracranial aneurysm 

model was first simulated by CPD based on phase 1 to generate the 
displacement field of the aneurysm surface for the rest of the 19 phases. 
These nodes and their displacements were used as a pooled sample 
(Ntotal= 5815), the spares data points were randomly selected points on 
the aneurysm surface, which were then used for constrained estimation. 

3.2.2. Simulation results 
Fig. 5 displays the deformation results obtained from the CPD sim-

ulations at different phases, which serve as reference results. Figs. 6–8 
depict the estimated results obtained using different numbers of sparse 
data points. As the number of sparse data points increases, the 
displacement field approaches the CPD estimation results. In Fig. 6, the 
constrained estimation employs 10 sparse data points, inadequately 
capturing the aneurysm surface deformation compared to the CPD 
estimation results shown in Fig. 5. Similarly, the overall displacement at 
each phase shown in Fig. 9(a) does not match well compared to the CPD 
estimation displayed in Fig. 9(d). Therefore, in later simulations, the 
sparse data points gradually increased. The study further increases the 
sparse data points to 300 for higher accuracy, as presented in Fig. 7. It 
displays more surface deformation features visible in the contour dis-
tribution compared to Fig. 5. Fig. 9(b) shows that the displacement 
distribution at each phase is closer to the CPD estimation in Fig. 9(d). We 
further increase the number of sparse data points to 600, and the esti-
mation results are shown in Fig. 8, which are closer to the CPD esti-
mation in Fig. 5. In Fig. 9(c), the displacement distribution at each phase 
is almost identical to the CPD estimation in Fig. 9(d). Table 2 shows that 
the error decreases as the number of sparse data points increases. The 
mean square error, mean absolute error, and root mean square deviation 
converge at around 0.002, 0.02 and 0.04, respectively, which suggests 
that using approximately 600 sparse data points is sufficient to achieve 
adequate accuracy. Finally, we compare the volume changes in Fig. 10, 
where STL represents the volume of the original 3D model (STL file) 

Fig. 14. Displacement plots obtained by the reference solution and constrained estimation at different compression steps: (a) step 1; (b) step 2; (c) step 3; (d) step 4; 
(e) step 5; (f) step 6. 

Fig. 15. The relative error with compression steps.  
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obtained by segmentation. The volume change of the aneurysm obtained 
from the CPD and constrained estimations using 600 sparse data points 
are then compared with the original STL file. We can see that the volume 
change of both estimation methods is very close to the volume change of 
the original 3D model. This indicates that the proposed constrained 
estimation method is accurate when using sufficiently sparse data 
points. 

3.3. Experimental analysis 

3.3.1. Experimental procedures 
The experimental analysis was performed on a cubic model made of 

silica gel with dimensions of 20mm × 20mm × 17mm and with a hollow 
cube at a 4.5mm diameter. The material properties of the cubic sample 
are a Poisson’s ratio of 0.47, a density of 1000kg/m3 and Young’s 
modulus of 1.4MPa. Fig. 11(a) shows the experiment setup, where the 
cubic sample is placed on a rigid platform and compressed from the top 
by a moving compression platform. An optical coherence tomography 
(OCT) imaging system with a digital volume correlation (DVC) algo-
rithm [43] is used to capture and estimate the displacement within the 
imaged area. To mimic the experimental conditions, the cubic model 
used for FEA simulations and constrained estimation was modelled with 
the same boundary conditions. The cubic model is shown in Fig. 11(b), 
the nodes on the bottom (y = 0mm) of the cube model were assumed to 
be fixed. A prescribed displacement of 2mm was applied to the top 
surface (y = 20mm) of the cube model. 

Firstly, FEA simulations were carried out, and the results were used 
as a reference solution and further compared with the constrained es-
timates for verification. The FEA simulations meshed the cubic model 
into 4840 nodes and 24000 tetrahedral elements, was the same as the 
cubic sample in terms of geometry, material properties and loading 
conditions. Fig. 11(b) and (c) show the scanning region of the OCT 
imaging system, represented as the blue region. The initial OCT images 
of the cubic sample were taken before any compression was applied. 
This served as a baseline for comparison with the compressed images, 
and then the prescribed displacement was applied to the cubic sample 
using for 6 compression stages ranging from 0mm to 2mm. OCT images 
were taken at different compression levels to monitor the deformation of 
the cubic sample. The deformation of the cubic model was measured as 
it was compressed by analyzing OCT images using the DVC algorithm. 
Fig. 11(b) and (c) illustrate the selection of six sparse data points for the 
constrained estimation. Among these data points, two were located 
within the scanning area, while the remaining four were positioned at 
the top surface’s corners. As the top surface was subjected to a pre-
scribed displacement, the displacements of all nodes on this surface were 
known. However, only four vertices were selected as sparse data points 
for computational efficiency. This approach expedited the calculation 
process without compromising the accuracy of the estimation. 

3.3.2. Experimental results 
Fig. 12 (a) and (b) show the deformation results obtained from the 

FEA reference solution and the constrained estimation. We can see that 
the overall displacement field obtained from the constrained estimation 
is very close to the reference solution. To further study the simulation 
results, the front view of the modelling results of the cubic model ob-
tained by both methods was plotted in Fig. 12 (c) and (d), and we can see 
a slight difference in the surrounding region of the hole because we used 
only two sparse data points in this region, but the overall result is still 
acceptable. Fig. 13(a) shows the distribution of surface displacements 
estimated by DVC in the final compression step. However, the results are 
not entirely smooth due to noise in the measured data, and not all sparse 
data points can be used in the analysis. Fig. 13(b) and (c) show the FEA 
reference solutions and constrained estimation results for the scanned 
region, which are very similar to the displacement distribution of the 
DVC. In other words, we used the measured data from the OCT imaging 
system to reconstruct the overall deformation field of the cubic model. In 

Fig. 14, the displacements at different compression steps were plotted, 
and we can see that as the step increases, the results of the constrained 
estimation are closer to the FEA reference solution. This trend is also 
reflected in the relative error plot in Fig. 15, and the statistical errors of 
the constrained estimation are 0.02439 for the mean square error, 
0.11598 for the mean absolute error, and 0.14364 for the root-mean- 
square deviation. The above analyses show that the proposed method 
can estimate the overall deformations of the cubic model from the 
measured data with relative accuracy. 

4. Discussion 

4.1. Contribution 

Although haemodynamic parameters such as OSI, PLc and WSS are 
associated with the development and rupture of intracranial aneurysms, 
deformation of the surface of intracranial aneurysms [8,18], such as 
irregular pulsations, is also an important reference factor [37,44]. The 
proposed constrained estimation allows a reliable reconstruction of the 
surface deformation of intracranial aneurysms during a cardiac cycle 
based on sufficient sparse data points. The results estimated by the 
method presented in Section 3.2 are very similar to those estimated by 
the CPD method [42]. Compared with the CPD method, the proposed 
method is only based on sparse data points, and the L matrix in Eq. (25) 
can be precomputed after these sparse data points are identified, which 
improves the computational efficiency. Meanwhile, the global optimi-
zation of CPD requires high computational cost, especially when dealing 
with large point clouds. This may lead to longer processing time, espe-
cially on resource-limited devices. 

Moreover, compared to purely imaging-based displacement estima-
tion methods, such as the DVC algorithm [43] in Section 3.3, the pro-
posed method exploits the laws of elastic physics and offers better 
accuracy. As demonstrated in Fig. 13(a), DVC estimation results are not 
as smooth as the proposed method, and the accuracy of DVC estimation 
is highly dependent on image quality. In medical imaging, where image 
quality can be compromised due to various factors, such as motion ar-
tifacts and image noise, this limitation can impact the accuracy of the 
displacement estimation. In contrast, the proposed method allows ac-
curate displacement estimation using measurements from sparse data 
points by incorporation of physical laws. 

4.2. Limitation 

Despite its potential advantages, the proposed method has some 
limitations. Currently, the method focuses solely on homogeneous 
simulations and does not account for the inhomogeneous mechanical 
properties of the aneurysm, which is an essential consideration for 
future research. Therefore, further investigations are needed to address 
these limitations and explore the feasibility of incorporating inhomo-
geneous mechanical properties in the proposed method. Furthermore, 
the current method performs the simulation based on only one patient; 
with the analysis of data from multiple patients, our proposed method 
has the potential to detect any potential relationship between aneurysm 
surface deformation and the risk of aneurysm rupture. Alternatively, by 
analyzing more patient data, we aim to establish a correlation between 
hemodynamic parameters and aneurysm surface deformation, such as 
OSI, PLc and WSS. Moreover, it is noteworthy that the proposed method 
does not consider the possible presence of noise in the measurement 
data. However, in practical situations, measurement data is often subject 
to noise. We suggest incorporating a noise-filtering technique into the 
proposed method to address this issue. For instance, the Kalman filter 
[45] could be employed to enhance the method’s robustness against 
measurement noise. 
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5. Conclusion 

The accurate estimation of the deformation of the intracranial 
aneurysm surface is a critical parameter for assessing the risk of aneu-
rysm rupture. This research aims to reconstruct patient-specific intra-
cranial aneurysm surface deformation using a constrained estimation 
approach based on sparse data points. The proposed framework for-
mulates the problem of aneurysm surface deformation as a constrained 
estimation problem, where the objective is to minimize the misfit error 
between the estimated and measured sparse data points. The perfor-
mance of this approach is demonstrated through both simulation and 
experimental results, which show that accurate aneurysm surface 
deformation can be achieved by incorporating a sufficient number of 
sparse data points. Overall, this research provides a novel solution for 
estimating intracranial aneurysm surface deformation, which has 
important implications for the clinical management of aneurysms and 
the prevention of ruptures. 

In future work, we hope to explore the potential relationship that 
may exist between aneurysm surface deformation and rupture risk by 
analyzing more patient data. In addition, after obtaining aneurysm 
surface displacements, we can calculate the strain of the aneurysm 
surface during the cardiac cycle. The distribution of aneurysm surface 
strain in low-risk aneurysms may differ from that in high-risk aneu-
rysms. Based on a large amount of patient data, we aim to explore the 
potential correlation between the risk of aneurysm rupture and the 
distribution of aneurysm surface strain. Furthermore, measurement 
uncertainty is also an important topic in medical imaging and clinical 
research, especially when high accuracy and reproducibility are 
required. Therefore, quantitative assessment of measurement uncer-
tainty based on 4D-CTA image datasets of multiple patients is needed to 
improve the credibility and applicability of studies. 
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