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Abstract. Of all mammalian vibrissae, those of certain species of pinnipeds are

exceptional. Researchers believe that their curious undulating form evolved for

hydrodynamic detection. Our understanding of how these whiskers work depends on a

geometrical model that captures the crucial pertinent features of the natural vibrissae

including its tapering and curvature. It should also account for the form of the whisker

when it flexes under external loading. We introduce and study a normal skeleton of

a two-dimensional projection of a harbour seal whisker. The normal skeleton is a

complete shape descriptor that involves reduction to the centreline equipped with a

thickness function of the orthogonal cross-section. The contours of the whisker shape

are extracted from a 2D greyscale scan. Our analysis reveals correspondence between

the undulations of the width and oscillations of the centreline curvature as functions

of arc length. We discuss two possible explanations for that remarkable feature: one

based on consideration of growth and the other of plastic deformation. For the latter

we employ a mechanical model to demonstrate appearance of curvature oscillations

caused by extensive deflection of the undulating whisker due to external loading.
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1. Introduction

Among all mammals, the whiskers of certain phocids, especially of Harbour seals (Phoca

vitulina), Fig. 1, have probably the most intricate shape: close inspection reveals that

they have an undulating thickness [1, 2, 3]. Those undulations are superimposed on a
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tapered and intrinsically curved whisker shaft (Fig. 2). Pinnipeds use their vibrissae

for fine-scale tactile discrimination and hydrodynamic detection [4, 5, 6, 7]. It was

suggested that the peculiar bumpy shape of harbour seal whiskers is evolved to reduce

hydrodynamic drag, to suppress self–generated noise during swimming and to improve

sensitivity of detecting vortex trails left by prey [1, 8, 9]. This has inspired researchers

to investigate high-sensitivity flow sensors shaped in a similar form, as well as aero- and

hydropropulsion flow structures [10, 11, 12]. Our understanding of how these whiskers

work depends on a geometrical model that captures the crucial pertinent features of the

natural vibrissae, including its tapering and curvature. It should also account for the

form of the whisker when it flexes under external loading.

Figure 1. Harbour seal. Photo by Dr. Alyx Milne, Seal Cove, SeaQuarium Rhyl.

An ad hoc geometric model was proposed that catches conspicuous features of

harbour seal whiskers [13, 14, 3]. However, it does not provide a rigorous specification

of how the model parameters can be measured for real vibrissae. In particular, it does

not specify the location of the centreline, which is assumed to be a straight line. We need

a well–defined and accurate skeletonisation method serving both the proper geometrical

description and mechanical characterisation of whiskers. In this paper we set out a new

approach, one that is consistent with conventional mechanical engineering models of

slender elastic structures. In presenting that approach we draw attention to interesting

morphological aspects of the harbour seal vibrissae that have not been discussed to date.

The development of our model evolved from extensive analysis of the curved and

tapered forms of mystacial vibrissae belonging to a wide variety of species, of which
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Figure 2. A scan of a harbour seal whisker. The whisker was scanned at a resolution

of 1.985 microns per pixel.

pinnipeds are a subset [15]. Inspection of 2D greyscale scans of harbour seal and grey

seal (Halichoerus grypus) vibrissae revealed their characteristic slender curved profile

confined by distinctly wavy boundaries. By applying a standard image processing

technique we find the 2D contours of the whiskers. It is convenient to characterise

the whisker shape by reducing it to a centreline (skeleton) accompanied with a function

that describes the variation of width as we move along this centreline. The process of

computing that pair is called skeletonisation [16]. The 2D shape of the whisker can be

reconstructed on the basis of that skeleton and the width function.

From a variety of the previously proposed and used geometrical skeletonisation

techniques, we recall here just three: the widely used medial axis [17] and its derivatives,

the symmetry chord axis [18] and the symmetry axis defined by the Process-Inferring

Symmetry Analysis or PISA [19]. In all these cases we have a set of maximal inscribed

disks, whose diameters clearly tend to overestimate the perceived thickness. Note that

though the symmetry chord axis may be defined without appealing to the inscribed disks

and the width can be measured along the symmetry chord, the latter is not necessarily

orthogonal to the centreline. As mentioned by Leyton, “...different symmetry analyses

serve different purposes and are therefore appropriate for different circumstances” [19].

What we need for the whisker analysis is to require that the centreline bisects the

normal cross-section everywhere. We call the centreline that satisfies this condition a

normal skeleton. The normal skeleton is a more appropriate tool for revealing both

the centreline and width of an extended shape of a whisker than other symmetry axes.
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Furthermore, the normal skeleton is consistent with one–dimensional models for slender

elastic bodies, in particular for the Cosserat rod [20].

In this note we set out a procedure for constructing a normal skeleton for a 2D

projection of a whisker. In section 2 we introduce the normal skeleton. In section 3 we

apply this model to a natural harbour seal whisker which is representative of the form

that we observe in this species. In doing so, we find new features, which are addressed

in sections 4 and 5. We finish this note with concluding remarks.

2. The normal skeleton equations

We start with a short description of the normal skeleton for a 2D domain. In the next

section this formalism will be applied to description of natural whiskers.

Let r(s) = (x(s), y(s)) be a curve parametrised by arclength s. The tangent to

that curve makes an angle θ(s) to the x-axis of the Cartesian coordinates in the plane.

Then we can write for the unit tangent vector t(s) := r′(s) = (cos θ, sin θ), here and in

the following the prime denotes the derivative with respect to s (Fig. 3). We also define

the unit normal n(s) = (− sin θ, cos θ).

We require that each point of r(s) to be at the same distance w(s) from two points

at the boundaries, i.e. the points r(s) ± w(s)n(s) to belong to the boundary curves

r±(s±) each parametrised by its arclength s±. In other words, we wish the curve r(s)

to be a normal centreline for a domain bounded by the given curves which are assumed

to be defined by their Whewell equations, i.e. the tangential angles θ±(s±) are known

continuous functions of the corresponding arclengths (along with coordinates of the

initial points r±(0)). For the boundary unit tangent vectors we have t±(s±) := dr±(s±)
ds±

.

It may be shown that the normal centreline is defined by the following sixth-order

system of autonomous ODEs:

w′(s) sin(θ+(s+)− θ−(s−)) = −2 sin(θ−(s−)− θ(s)) sin(θ+(s+)− θ(s)) , (1)

(1 + wθ′(s)) sin(θ+(s+)− θ−(s−)) = 2 cos(θ−(s−)− θ(s)) sin(θ+(s+)− θ(s)) , (2)

s′±(s) sin(θ+(s+)− θ−(s−)) = ∓2 sin(θ∓(s∓)− θ(s)) , (3)

x′(s) = cos θ(s) , (4)

y′(s) = sin θ(s) . (5)

Eqs. (1–5) have 6 dependent variables: half–width w(s), the tangential angle of the

normal centreline θ(s), two arclengths s±(s) that specify the positions at the boundaries

of the incident points with the centreline normal line, and the coordinates of the

centreline x(s), y(s).

Eqs. (1–3) become singular when θ+(s+) = θ−(s−) mod π. In these points

the chord is orthogonal to both tangents and θ = θ− = θ+. We can use these

points to set initial conditions. Let the chords connecting points at the edges be

δ(s−, s+) := r−(s−) − r+(s+). Then, to find the singular points one can compute the

distance function δ(s−, s+) = ‖δ(s−, s+)‖. Its local minima define the minimal double
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Figure 3. Normal centreline r(s) (black) for a shape bounded by two edges r±(s±)

(blue and red), cross sections shown in green; t and t± are the unit tangent vectors to

the centreline and the boundaries, resp., these vectors make angles θ, θ±, resp., with

the x-axis. The tangent vector r′+ is drawn in magenta and r′− in light blue. The

yellow quadrangle is spanned by r′±.

critical chords. If such a chord does not exist, then the initial chord can be chosen based

on some other consideration. In particular, we can start at a point where the boundaries

join each other.

3. Normal skeleton of a harbour seal whisker

We have previously scanned several mystacial vibrissae of semi-aquatic mammals [15].

Here we explain how we compute the normal centreline for a harbour seal taken from

that database (results for other whiskers can be found in Supplementary Material).

The whisker was plucked from the mystacial pad, then placed on the bed of an

Epson V600 scanner (Epson, Tokyo) and scanned at 12,800 dpi for a pixel resolution

of approximately 2 microns (Fig. 2). The image segmentation was performed to obtain

a set of coordinates of points at the two edges of the 2D projection [15]. We have

N− = 26163 points belonging to the leading edge, and N+ = 24482 points at the trailing

edge. We first approximate each of the two edges by a curve of class at least piecewise

C2, C± = {r±(s±) = (x±(s±), y±(s±)), s± ∈ [0, L±]}, s± arc length (0 corresponds to

the tip and L± to the base). We compute the tangential angles θ± as functions of their

arclengths s± (Fig. 4) so that the edges are described by the Whewell equations.
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The minimal chords connecting the edges are found and the intervals of the normal

centrelines between the chords are computed by integrating the governing equations

Eqs. (1–5). Then the entire centreline is assembled for the full length L = 35.41 mm

(note that to find the length of any (slender) shape, we need to define its centreline

first).

y, mm

x, mm

y, mm

x, mm

Figure 4. Top: Normal centreline (black) for a harbour seal whisker. Minimal chords

are shown violet. The origin of the Cartesian coordinates is located near the tip of the

whisker. Bottom: A part of the whisker with added orthogonal chords (green).

The tangential angle of the obtained normal centreline is presented in Fig. 5,

together with its approximation by a parabola. The half-width w(s), together with the

approximating polynomial, is shown in Fig. 6, where we observe pronounced oscillations

for the thick part (ca. 2/3 of the total length, see the red dot in Fig. 6). It is interesting

to note that the polynomial has an inflection point that coincides with the emergence

of high amplitude oscillations. Close inspection shows that the similar oscillations also
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occur in the θ function (Fig 5.) within the same interval.

Figure 5. The tangential angle θ for the normal centreline as a function of the

arclength s for a harbour seal whisker. The second-order polynomial linear fit

θ̄(s) = 1.484− 0.744 · 10−1s+ 0.958 · 10−3s2 is shown in blue (R2 = 0.986).

Figure 6. Half-width w as a function of the normal centreline length s for a harbour

seal whisker (black). The sixth-order polynomial linear fit w̄(s) = 0.353 ·10−1 + 0.644 ·
10−2s− 0.631 · 10−3s2 + 0.183 · 10−3s3− 0.120 · 10−4s4 + 3.100 · 10−7s5− 2.837 · 10−9s6

is shown in blue (R2 = 0.934). The red dot marks the inflection of the polynomial

function at the arclength s? = 12.17 mm about one third (0.34) of the full length. The

red curve shows the oscillation amplitude of the half–width (the difference between the

black and blue curves ∆w(s) = w(s)− w̄(s)).

Indeed, analysis reveals that the oscillations of the curvature θ′(s) and of the width

correlate. Furthermore, peaks of curvature tend to arise at troughs. To investigate

that, we prepared two functions: the half-width w(s) and the smoothed curvature κ(s),

computed by application of the LOWESS smoothing of θ′(s) (Maple procedure Lowess
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Figure 7. The smoothed curvature κ(s) (blue) of the normal centreline, the first-order

polynomial linear fit κ̄(s) = −0.820 ·10−1 +0.215 ·10−2s (light blue) and the difference

∆κ = κ(s)− κ̄(s) (black).

with bandwidth 0.1). We then centralised them to keep only variations relative to

the slowly varying polynomial backbone expressed as low-order polynomials (for the

curvature we take the first-order). So, we consider the functions ∆w(s) := w(s)− w̄(s)

(Fig. 6) and ∆κ(s) := κ(s)− κ̄(s) (Fig. 7).

To characterise coordinated variation of the width and the centreline shape, we

compute

Cι(s1, s2) = max
δ∈[−∆,∆]

cι,δ(s1, s2), ι = 1, 2,

where cι,δ(s1, s2) is the Pearson product-moment correlation coefficient of 1) ∆w(s) at

the interval [s1, s2] and 2) ∆κ(s) at the shifted interval [s1 + δ, s2 + δ], σι + p ≤ s1 <

s2 ≤ L− p, σ1 = 0, σ2 = s?. Parameter p is chosen equal to the half of the period of the

width oscillations. We finally find

Cι(`) = max
s1∈[0,L−σι−`]

Cι(s1, s1 + `).

The correlation functions Cι(`) serve as quantitive indicators of maximal lengths of

intervals at which our functions are correlated at certain level (Fig. 8). They confirm

that variations of the whisker width and of its centreline curvature are coordinated.

The above observations have not been reported before. Further experimental

studies should be carried out to determine their causes. Nevertheless, from a mechanics

perspective, we can make a couple of remarks that we believe may be helpful.

On the one hand, assuming that the whisker geometry we observe is intrinsic, the

curvature oscillations must have been caused by a specific growth mechanism: one that

coordinates the centreline extension, its bending and the width variation (see section 4).

On the other hand, we would expect such a form of the centreline if an initially straight

rod with undulating thickness were bent by an external force. We note that the curvature

sine-like waves are almost absent in the part of the vibrissa that was grown first, i.e.

near the tip (s < s? = 12.17 mm, see Fig. 6), when it was relatively less slender, i.e

when the width increases faster than a linear function. The high curvature undulations
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Figure 8. Width-curvature correlation coefficients Cι(`) as functions of the fraction λι
of the correlation maximising whisker length interval to the full length (λ1 := `/L for

ι = 1, blue-magenta) and to the oscillation interval (λ2 := `/(L− s?) for ι = 2, green-

orange). The colour encodes the relative shift −δ along the arclength that corresponds

to Cι(`).

for s > s? (the younger part of the whisker closer to the base) may have come about

because this part is more prone to deformations with amplitudes exceeding the elastic

limit. In section 5, we apply a simple beam model to investigate this hypothesis.

4. Whisker growth

The normal skeleton not only delivers a convenient means to encode a whisker shape,

but it may also serve as a formal tool to describe the kinematics of its growth. The

growth occurs in the follicle and the vibrissal shafts are made of dead cells. Thus, it

can be considered as an intrinsic accretive growth [21]. Although we surmise that the

harbour seal vibrissae (similarly to other pinnipeds) grow non–linearly [22, 23, 24, 25],

the obvious monotonicity of the contour coordinate s as a function of physical time

allows us to express growth in terms of this quasi-time. Indeed, we may think of the

coordinate s as a measure of time passed since the growth started and then the normal

cross–sectional chord is a growth front surface at ‘time’ s. Thus, the solution of Eqs. (1)–

(3) can be interpreted as a model for the growth.

From this perspective, the tangent vectors t and r′± represent the rates and

directions of the growth (the growth velocity vectors) in the middle point and at each
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of the boundaries, resp., at the ‘time’ moment s. It may be shown that the tips of all

three vectors lie on a straight line, therefore we come to the linear gradient of growth

across the normal chord (see the yellow quadrangle in Fig. 3, spanned by the growth

vectors of the points at the normal chord). The growth gradient manifests itself as

the curvature of the centreline. Variations of this gradient with ‘time’ (i.e. along the

centreline) encode non–uniformity of the centreline curvature [26, 27, 28]. Since such

non–uniformity is observed, we conjecture that it is caused by corresponding oscillations

of the growth gradient whilst the whisker is growing. The cross-sectional growth gradient

that controls the centreline curvature should be steeper near the troughs.

5. Deflection of a straight model whisker

Alternatively, the appearance of the local maxima of the centreline curvature associated

with the trough points may be caused by plastic deformations of the whisker material

when the whisker is deflected under action of external forces, including contact forces

with environmental objects and hydrodynamic drag. In this section we demonstrate, on

a simple model, that a deformed whisker with undulating profile bends non–uniformly

so that high strain and stress are localised near the points of local thinning.

We consider an intrinsically straight elastic rod of length L = 35.41 mm with

thickness 2w(s) mm, where s arclength, s ∈ [0, L], (Fig. 6). We assume that the normal

cross-section is an ellipse with major axis w(s) and minor axis b(s) = q(2w̄(s)− w(s)),

where w̄(s) is the sixth-order polynomial linear fit (defined in the caption of Fig. 6) and

q < 1 is a positive dimensionless parameter that characterises an average noncircularity

of the cross–section. This model is consistent with that described in [14]. The second

moment of area with respect to the axis z, normal to the plane of the whisker, equals

I(s) = π
4
w3(s)b(s) and the bending rigidity of the rod B(s) = E(s)I(s), where E

is the Young modulus. Following [7], we approximate the latter as a linear function

E(s) = E0 + E1s/L with E0 = 2.0 GPa and E1 = 4.0 GPa.

The planar shape of the centreline is governed by

B(s)ϑ′(s) = M(s), (6)

M ′(s) = N cosϑ(s), (7)

x′(s) = cosϑ(s), (8)

y′(s) = sinϑ(s), (9)

where ϑ is the tangential angle, M(s) is the bending moment and N equals a normal

force applied to the rod’s centreline at some point in the xy-plane [29], e.g. if applied

at the tip, then this represents a standard cantilever.

We numerically integrate the above system with the initial conditions x(s0) =

x0, y(s0) = y0,M(s0) = 0, ϑ(s0) = ϑ0 over the interval [s0, L], where s0 is the point of

application of the force N . For certainty, we choose s0 = s?. Fig. 9 shows a solution to

Eqs. (6)–(9), for the case q = 1/2, N = −0.1 N. We observe an oscillatory behaviour of
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the curvature M(s)/B(s) with its minima (maxima) at the same arclength coordinates

as maxima (minima) of the w(s). This depends on neither the value of the parameter q

nor the position s0. The graphs of the curvature multiplied by the half–width w(s) and,

in addition, by the Young modulus, better represent the strain and traction near the

whisker surface (see black and magenta curves, resp., in Fig. 9). The whisker material

must yield if and where the strain exceeds of the elastic threshold. Note that the graphs

are, on average, less inclined to the horizontal axis compared to the curvature (green),

i.e. the traction extreme values are more uniform along the length of the whiskers,

which suggests that the elastic limit may be violated at many isolated locations at the

same time.

Figure 9. Model curvature of the centreline as a function of arclength s (green,

marked on the left vertical axis in rad/mm) in the interval [s?, L]; also multiplied by

the half–width w(s) (black, left, in radians). The magenta curve is the latter multiplied

by Young modulus E(s) to represent the traction (right, in MPa). For comparison, the

smoothed curvature of the whisker κ(s) is shown (blue, left, in rad/mm). Also copied

is the difference w(s)− w̄(s) from Fig. 6 (red, left, in mm).

Note that the assumption here of an intrinsically straight rod, does not detract

in any way from our conclusions. Rather, an intrinsically curved rod would serve just

as well in demonstrating that elastic-plastic deformations could be the cause of these

oscillations in the curvature.

6. Concluding remarks

We additionally tested a whisker of another individual harbour seal and found essentially

the same pattern of oscillations of the curvature function as that reported above (see

Supplementary Material). We also computed the normal skeletons for whiskers of two

other species: grey seal and California sea lion (Zalophus californianus) The shape of

the first also has undulations though not so pronounced as that of the harbour seal. The
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oscillations of the centreline curvature look random and their periodicity is not observed.

The whiskers of the second species lack periodic variations of width; correspondingly,

the centreline curvature does not show any signs of periodicity.

In a previous study, involving a wide variety of mammalian whiskers, we adopted a

different procedure for the computation of an approximate normal skeleton [15]. That

procedure was designed on the assumption that both the curvature and width are some

parametrised functions of arclength. We showed that linear functions worked quite well

in most cases. However, the linear functions are obviously not able to characterise

oscillations neither of the centreline curvature nor of the whisker thickness. It is

straightforward to use other functions that potentially provide better accuracy, though

the penalty is likely an increase in the number of fitting coefficients. Here we have

employed a novel approach, one that does not require imposing any conditions on either

the possible shape of the centreline or the width function. The normal skeleton delivers

an efficient formalism for an accurate shape representation, for mechanical modelling of

a whisker as a slender structure and for growth description. The normal skeleton concept

can be generalised to describe a 3D shape. We believe that because of the aforementioned

features, the new shape descriptor can be helpful in the design of artificial whisker

sensors, and other slender structures, inspired by the intricate geometry of harbour seal

whiskers [8].
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