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Abstract 

Thermal spraying, an important industrial surface manufacturing process in sectors such as 

aerospace, energy and biomedical, remains a skill intensive process often involving multiple 

trial runs impacting the yield. The core research challenge in digitalisation of thermal spraying 

process lies in instrumenting the manufacturing platform as the process includes harsh 

conditions, including UV Rays, high-plasma temperature, dusty chemical environment, and 

spray booth inaccessibility. This paper introduces a novel application of machine learning to 
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the acoustic emission spectra of thermal spraying. By transitioning from the amplitude-time 

domain to a Fourier-transformed frequency-time domain, it is possible to predict anomalies in 

real-time, a crucial step towards sustainable material and manufacturing digitalization. Our 

experimental results also indicate that this method is suitable for industrial applications by 

generating useful data that can be used to develop Visual Geometry Group (VGG) transfer 

learning models to overcome the traditional limitations of convoluted neural networks (CNN).  

 

Keywords: Thermal spray; Acoustic; Digitalisation; Machine learning  

 

1.0. Introduction  

 

Thermal spraying dominates the surface manufacturing landscape as a special process for high 

technology sectors such as power generation, defense, bio medical and aerospace [1-4].Despite 

its dominance, the process still relies heavily on strict manufacturing plans and work 

instructions to ensure quality and consistency. When post-coating analyses uncover non-

compliant properties, it often leads to resource-intensive rework. 

 

1.1 Digitalisation of Thermal Spraying  

Digitalised thermal spraying [5] is an important new area of research that could help in 

improving quality and reducing rework in this process. The first step towards digitising thermal 

spraying would be to collect the process data in a digital format. Extant research [6-8] provides 

insights into some of these aspects using computational fluid dynamics to reveal combustion 

models in relation to process parameters. However, the quest for a comprehensive in-situ sensor 

system for holistic coating quality monitoring remains a challenge. The need for diagnostics 

arises from the need for thermal spray processes to achieve coating homogeneity in terms of 
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thickness, microstructure, and mechanical properties.  In general, diagnostics primarily revolve 

around in-flight particle velocity and temperature measurements.  Measurement of individual 

particle parameters include diagnostics with DPV 2000TM and spray position trajectory sensor, 

AccurasprayTM,  SpraywatchTM, Inflight Particle Pyrometer (IPP), particle image velocimetry 

(PIV) [9]. These sensors measure temperatures using IR emission emanating from molten 

particles and use time of flight to determine the particle velocities. Velocity can be precisely 

measured, but particle temperature readings could be inaccurate due to the uncertain emissivity 

of the material in a partially molten state. Moreover, substrate particle interaction could only 

be guessed based on the particle inflight diagnostics, which forms the basis of the 

microstructure and mechanical properties. Thus, in flight diagnostics may present certain 

disadvantages when compared to acoustic sensors. Moreover, inflight diagnostics are quite 

invasive when it comes to manufacturing factories’ inclination to spend time and material only 

on the coating process and not for everyday diagnostics. Thus, acoustics sensors are well placed 

non-invasive sensors. However, development of contactless sensors suitable for high-

temperature environments would help make the monitoring process more manufacturing-

friendly.  

Ideally, a sensor setup that could capture process deviations, displayed digitally on the shop 

floor, could provide a critical first step to digitalisation. The second step would be to develop 

machine learning models like Artificial Neural Networks (ANN) or Convolutional Neural 

Networks (CNN) to create a learning pattern for responsive manufacturing.  

 

1.2 Using Acoustic wave spectra in high temperature manufacturing 

Electromagnetic and acoustic wave spectra cane be used to monitor high temperature flying 

matter. The acoustic spectra encompass infrasound (<20 Hz), audible (20 Hz-20000 Hz), and 

ultrasound (>20 kHz) frequencies [10]. Acoustic waves, generated when solid objects interact, 
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have historical applications from infrastructure maintenance, as in assessing bridge durability 

from passing vehicles, to solving firearm-related crimes through noise analysis. Ultrasound, 

another application, is used to monitor foetal development. These applications typically operate 

at room temperature. Using acoustic monitoring in high-temperature processes like thermal 

spraying can streamline the need for multiple sensors and offer an integrated view of the 

process. An active application for the audible range is to identify in-situ mechanical behaviour 

of materials. Our study delves into the spectral analysis of particles impacting the substrate, 

probing the feasibility of detecting anomalies in feed rates, robot speeds, and surface 

preparation. For example, our spectral data suggest the potential to discern if a robot sprayed a 

component at a 90-degree angle or deviated from it. While several promising automation 

processes have been proposed in extant research on thermal spraying such as robot path 

optimisation [11] and parameter monitoring and control [12], acoustic emission is an 

interesting field of study for digitalisation of thermal spraying and even additive manufacturing 

methods. 

 

1.3 Deep Learning and Transfer Learning in high temperature manufacturing 

Manufacturing is witnessing a transformative shift due to the rising adoption of deep learning 

models, particularly in process monitoring, defect detection, and predictive analytics [13-15]. 

Among these models, Convolutional Neural Networks (CNNs) are specially tailored to extract 

meaningful data from digital images, facilitating tasks like image classification. Yet, 

implementing CNNs or other deep learning tools in manufacturing isn't without challenges. 

One major hurdle is gathering a large, diverse training dataset [16]. 

 Another concern is ensuring the long-term relevance of a model, especially in the ever-

evolving industrial landscape. Transfer learning [17] emerges as a solution to these challenges. 

It allows CNN models to be trained on one dataset (source) and then adapted for another 
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(target), thereby optimizing resources. In the context of manufacturing, it means using data 

from a range of production processes to build efficient models for specific applications. The 

Visual Geometry Group (VGG-16) model, developed by the University of Oxford [18], 

exemplifies this approach, using pre-trained CNN for transfer learning and serves as an 

important element in our research. 

Overall, our research highlights the potential of acoustic wave spectra for monitoring high-

temperature processes, such as thermal spraying, and introduces how deep learning models, 

such as CNNs, can be used in the high temperature manufacturing domain. We also highlight 

the significance of transfer learning, exemplified by the VGG-16 model, as a solution to the 

challenges faced in implementing deep learning in dynamic industrial settings.  

2.0. Principle of Acoustic Emission 

 

When a solid material gets bombarded with metal particles ranging in size from 50-100 

microns, strain energy is released, producing elastic waves within the material. These waves 

emit from the point of impact and travel across the material, serving as valuable signals for 

process monitoring—these signals are known as acoustic emissions. Two main signal analysis 

methods are utilized: the parameter analysis method and the waveform analysis method. The 

former uses acoustic emission parameters to analyse the signals, while the latter uses time 

domain waveforms and is more popular. Wavelet analysis combines the advantage of signal in 

the time domain and frequency domain [19].  

If the particles were simply bombarded at room temperature without any melting or with a high 

temperature plasma involved, the resultant wave's characteristics differ based on the molten 

state of the particle - whether molten, unmolten or semi molten. Any anomaly that happens in 

the thermal spray process would be in between the window of a perfectly optimised molten 

droplet and a particle at room temperature. Each particle state has its distinct acoustic signature. 
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Some acoustic emission events, such as an indentation during hardness testing, are so discrete, 

that one can capture signal amplitude vs time and then distinctly categorize them as being in a 

plastic zone or elastic zone.  

In the case of thermal spray, where particles with different thermal states (molten, semi molten 

or unmolten) strike the substrate at different velocities, several such events gets recorded. So 

instead of studying the amplitude vs time domain, Fourier transformed frequency vs time 

domain is more suitable to understand the process parameters and the associated particle states. 

When hundreds of thousands of particles impact a surface, as in thermal spraying (see fig 1), 

the frequency distribution of particles can be examined, which can provide insights into process 

deviations. 

 

Fig 1: Schematic of plasma spray gun cross section with the (a) electrode, (b) Nozzle generating 

the (c) plasma plume which melts the (d) powder that becomes a (e) coating laid onto a (f) 

substrate. The impact of particles during the thermal spray process triggers many acoustic 

emission events which can have multiple frequencies depending on several factors. 
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3.0. Research methodology  

 

An experimental approach was adopted, and a careful experimental plan was made to study the 

generation and propagation of acoustic waves in a steel substrate. A commercially available 

powder of Pure Titanium (Metco 4012A) in the angular form was deposited with F4 plasma 

spray gun with the spray parameters listed in Table 1. The particle size of the powder was in 

the range of 45-106 microns. Table 2 reveals the grit blasting parameters.  

Table 1: Spray parameters used for the acoustic emission experiments. 

Powder name (Vendor Oerlikon) Titanium Metco 4012 A 

Gun Current 550 Amps 

Voltage 18 Volts 

Primary Gas (Argon) 50 slpm 

Spray Distance  100 mm 

Carrier Gas (argon) 6 slpm carrier 

Hopper pressure 415 kPa 

Blasting  Grit blasted @ 400 MPa with 24 grits. Some 

samples were intentionally used unblasted. 

Microns/ pass Thickness Build up 10 microns per pass 

Coating Pass Counts Varied as per the experimental plan (See S1 

and S2 for supplementary information) Powder feed rate 

Robot Speed  

 

Table 2: Grit blasting parameters   

Blaster Model Guyson DC 80 

Grit Media Brown Aluminium Oxide 
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Mesh Size 24 

Blast Pressure  0.413 MPa 

Blast angle  60 degrees 

 

The data acquisition module comprised an acoustic emission kit with a 12-bit data acquisition 

board (BNC-2110, NI, UK) and a piezoelectric accelerometer sensor made up of lead zirconate 

titanate (Micro-80D, PAC, UK) [20]. The kit consists of a preamplifier (1220A, Mistras UK). 

A sensor of about 12 mm height and 10 mm diameter was glued to the back of the steel base 

material (about 2 mm in thickness) with silicone grease as a transmitting medium secured with 

aluminium tape.  

The preamplifier was set at 60 dB gain and was equipped with an internal band pass filter 

between 0.1 and 1 MHz. AE was recorded over the frequency range of 0.1 to 1 MHz with a 

sampling rate of 2.5 MHz and each recording was about 10-20 seconds long until the robot 

completes the raster and moves out of the spray sample. 

 The location of the sensor was at least 100 mm away from the spray path. The temperature of 

the plate never reached the temperature limit of the sensor during spraying. This was confirmed 

through a FLIRTM (TL540 model) IR imaging camera. The specimen and the sensor 

configuration are shown in Fig. 2.  
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Fig.2 Spray data acquisition layout revealing (a) backside of the steel plate on which the 

acoustic sensors were mounted, (b) amplifiers, (c) BNC blocks channelling the amplified data 

to (d) NI 6115 data acquisition card which connects to (e) the PC. The side views show two 

different gun angles being studied with respect to the plane of coating surface.  

 

The spray gun was moved at a predetermined distance at 90˚ and 60˚gun angles. The sensors 

used were Micro-80D broadband sensors supplied by physical acoustics corporation. The 

frequency response band of the sensors was between 100 kHz and 900 kHz. It is to be noted 

that the sensor can detect frequencies lower than 100 kHz, however, the response in these 

frequencies is poorer compared to that in the response band. The sensors were connected to 

2/4/6 preamplifiers with an amplification of 20 dB. These pre-amplifiers are in turn connected 

to a BNC block which connects to the NI-6115 data acquisition card (DAQ) hosted on a 

computer. LabView software was used to create a visual interface to set the data acquisition 
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parameters and to store the sensor generated data. The sampling rate during thermal spraying 

was set to 2 MHz. The raw data was extracted in the TDMS file format recording signal 

amplitude as a function of time. Due to the large volume of data, Python 3.0 was used to convert 

the TDMS to CSV files and split the CSV files into processable data, with MATLAB. This was 

converted to time vs frequency plots to better understand the impact of particles on the plate 

because of such effects mentioned in the above table. 

Four sets of conditions were chosen to be analysed as shown in Fig. 3. These conditions were 

1) the effect of robot speed changes, 2) the effect of grit blasting vs no grit blasting of the 

substrate 3) the effect of change in powder feed and 4) the effect of change in gun angle i.e. 

90˚ and 60˚ gun angle.  

 

Fig. 3: Influence of correlated parameter conditions (see Table S2 in the supplementary 

information). 

 



Accepted in Mechanical Systems and Signal Processing – 11.12.2023 

11 
 

Table S1 and S2 provided as supplementary information shows the spray parameters matrix 

used in this investigation to understand the influence of processing on the acoustic signature 

during spraying. With all other parameters remaining constant, plasma spray gun F4 was used 

with the Unicoat controller. The ABB manipulator was used with an Oerlikon Metco 9MP 

feeder for spraying. Titanium powder was used to study four variables to perform the 

deposition on a steel plate of thickness 2 mm, length 600 mm and width 300 mm. The plate 

was clamped to a bench vice with sensors mounted on the back of the plate.  

     To study the machine learning ability of the acoustic data, a testbed study was made to feed 

the model as a training dataset. This data compared the spray under two conditions using VGG-

16 under two spray conditions such as in the first case, the sample substrate was grit blasted 

(GB) and another case where the sample was not grit blasted (NGB). A novel protocol was 

designed to generate acoustic data, consisting of 37.5-millisecond samples that were fed as 

inputs for the deep-learning classification models. 

A rectangular metal plate was divided into equal halves along the length. Only the right half of 

the plate was grit blasted. A total of five passes were conducted, with different feed rates in 

each pass. The voltage signals were captured via the data acquisition kit at the sampling rate of 

1 MHz. The total recording was made for 58 seconds, where each pass generated a response 

acoustic band signal of approximately 4 to 5 seconds. Annotation for the Grit Blasted (GB) and 

Non-Grit Blasted (NGB) samples was done by further splitting of each band. As shown in Fig. 

4, the left quarter of the signal until 49.54 s shows the acoustic spectra when the robot travels 

through the grit-blasted half of the plate and the second left quarter from 49.54 s until 50.52 s 

shows the robot travel on the non-grit blasted half of the plate. The robot returns on the same 

path when it encounters the non-grit portion first from 50.52 s to 51.50 s and then traverses 

through the grit blasted portion again from 51.50 s to 52.40 s.  To split the band, the time stamps 

of each GB signal half and NGB signal half were analysed.  
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Fig.4: Waveform during spraying on Grit Blasted (GB) and Non-Grit Blasted (NGB) areas. 

Robot enters the grit blasted portion first and then traverses through the NGB portion before 

returning to the same path but in reverse order from 50.52 s (non-grit portion first followed by 

grit blasted portion) 

Using Python and MATLAB, the raw TDMS file was converted into wav format and chunks 

of wav files corresponding to the time stamps were generated. These chunks were either GB 

or NGB. A total of 400 chunks, each 37.5 ms long, were generated, out of which 200 were GB 

and 200 were NGB. Generating these chunks served two purposes: firstly, a balanced dataset 

of equal GB and NGB acoustic samples from the whole recording was produced. Secondly, 

these chunks could potentially have unique acoustic signatures, implying that in instances 

where an acoustic signal can possibly have signatures at smaller time intervals, more data can 

be produced by simply splitting the signal. Such type of data can be used in applications where 

acoustic signatures serve as the features for training DL models. 

As discussed earlier, the Fourier-transformed frequency vs time plots are ideal for the acoustic 

analysis. Therefore, each chunk was fast-Fourier transformed, converting it into spectrograms. 
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A spectrogram is the visual representation of a signal’s strength at various frequencies over a 

time. Spectrograms also reduce the complexity of the problem by reducing an audio 

classification task to an image classification task. Fig. 5(a) and (b) show the spectrogram of 

one GB chunk with that of the NGB chunk of the same pass. The resulting spectrogram dataset 

was used for training three Deep Learning models - A pre-trained, tuned VGG 16, an un-trained 

VGG 16 and a 6-layered CNN model. 

 

(a) 
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(b) 

Fig 5: Spectrograms of 37.5 ms long (a) GB chunk and (b) NGB Chunk 

 

4.0. Results and discussions 

 

This section discusses various time-frequency plots wherein the recording time was plotted on 

the Y-axis and frequency of the acoustic waves were recorded on the X-axis. The values of the 

colour bar in Fig. 6 to Fig. 13 show the magnitude of the signal acquired by the acoustic 

emission transducer. Considering the amplitude of the range of the values, the signal, which 

was recorded in Volts, was transformed into decibels (with 0 dB representing 1 Volt) to obtain 

a narrower scale of values. Thus, the colours can be presented to depict a smoother variation. It 

must be taken into account that the absolute value is not really meaningful because it depends 

on the position of the acoustic emission transducer, the material tested, etc. Therefore, the 

relative values or the changes should be considered. 
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The frequency bands were divided in three distinct zones namely, a strong red base band (< 

100 kHz), a faded yellow/teal band from 80 kHz until 380 kHz and the histogram band itself 

with three different colours (red, yellow and teal). The red base band was consistently observed 

across all trials. The base material in the form of a plate was gripped to the vice, allowing 

external forces to cause it to oscillate similarly to a cantilever beam. The external forces in this 

case were a result of the ignition from the spray gun, the exhaust vent air, robot motion and 

particle feed rate. Thus, the low frequency base band of < 100 kHz was recorded because of 

gun ignition, exhaust vent, the external noise from firing of the gas swirl gun and the gas 

swirling inside the gun. The faded teal band was a result of the particles bouncing back or in 

the air that never get deposited and will serve to improve the deposition efficiency of the 

coating process. The fact that the faded teal band matches with the red frequency band of the 

plume histogram proves that the dust cloud exists until the gun rasters itself on the substrate.   

  

(A1)       (A2) 

Fig. 6: Comparison of the parameters A1 and A2 with constant spray parameters and powder 

feed rate and only varying the robot speed (500 mm/s (A1) vs 800 mm/s (A2))  

 

A marked difference in the shades of particle histogram between A1 and A2 was seen because 

of the difference in the robot speed (Fig. 6). The intensity of the particle histogram was 1 MHz 
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in the case of titanium, but it varies with particle chemistry and the physical property. For 

example, if it is WC, the histogram band could even be as high as 2-3 MHz since the dense 

particles of WC are likely to create such high frequency waves. Hence, band height could be 

mapped to particle composition and particle size could serve as a unique identifier in a 

manufacturing setting. The time taken by the gun to move over the plate (2-3 seconds in case 

of A1 and 4-5 seconds in case of A2) manifests itself through the width of the frequency 

histogram spectrum. The red band in the powder histogram from 80-380 kHz reveals that about 

30% of particles gets deposited with high impact. These particles adhere to the substrate and 

provide the needed bond strength to keep the coating intact with the substrate. The yellow band 

from 380 kHz to 700 kHz could have unmelted parts and partially impact the substrate and the 

teal bands above it were either unmelted or particles that could lead to more porosity in the 

coating.  For the same setup at A2, the gun-base material interaction shrunk by 25% which was 

a good indication that the robot speed has increased from 500 mm/s to 800 mm/s. As a result 

of the lower dwell time of the gun on the base material in the latter case (A2), it is to be seen 

that the yellow band wave generation was non-existent and the teal band extends from 380 kHz 

to 1 MHz due to less impacting particles and thereby less deposit volume on the substrate. Only 

one pass was given as the substrate was not blasted and there would be no adhesion of particles 

to the substrate even with multiple passes. The study was done to simply capture what can be 

expected as a signature when the surface was not properly grit blasted. 

It was found that the acoustic waves showed a different sequence of events from turning on the 

exhaust, switching on the power supply, striking the arc between the anode and cathode and 

the full development of the arc, the gas swirl, the powder feed flow and the movement of the 

robot over the base material. They also propagate differently according to their frequency. Two 

sensors were placed to ensure that the accuracy of the frequency of waves generated is 

repeatable. The depth of the propagation was kept uniform by selecting a base material with 
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uniform thickness (2 mm). Low frequency events up to 50 kHz could be attributed to the 

exhaust flow. The event 50-75 kHz was due to turning on the power supply and the gas swirling 

through the anode and the arc striking. Future studies might benefit from employing frequency 

filters to isolate these events, offering insights into ideal frequency ranges for the 

aforementioned events. However, this was not in the scope of this study.  

With grit blasting and 15g/min powder, it was expected to have a dense generation of 

frequencies up to 450 kHz which was further confirmed (see Fig. 7). Five bands revealed 5 

passes and the gap between the bands showed the robot movement in the air to avoid 

overheating of the base material. It must be noted that every pass adds material to the substrate 

and the grit blasting and spray parameters including powder flow have been so consistent that 

all 5 repeated pass histograms generated identical acoustic frequencies, and this would serve 

as a visual benchmark for any process anomalies for a frozen process with a predetermined 

material and process. The width differences of the bands between C1 and C2 revealed that the 

robot moved faster when the width is shorter and slower when the width is higher. Since, such 

unique bands are assigned, it helps to create unique CNN/ANN models to quantify the flow 

rate of the powder. This quantification can be used to loop to the process control and set real-

time changes to gas flow controllers and feeders to meet the powder plume characteristics. 

Fig. 8 revealed that grit blasting triggered high frequency acoustic waves especially with 

frequencies in the range of 400 kHz to 1 MHz band than in case of A1. Thus, digital contrast 

between a grit blasted vs non grit blasted surface could be made available for the models to 

learn and create a machine learning paradigm. Fig. 9 is additional evidence to the fact that a 

visual deviation in the process could be revealed using acoustic emission patterns. The plot 

shown in Fig. 10 show that when there is a collective anomaly with improper surface 

preparation and the powder feed malfunctioning, it could lead to very low frequency faded 

bands and will serve to digitize the caution boards. If powder flow is stopped, it stops 
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generating the >450 kHz, thereby clearly distinguishing the powder vs no powder situations. 

Fig. 11 also reveals the same pattern with only difference being that the robot speed was higher 

in the latter case.  

 

(C1)       (C2) 

Fig. 7: Comparison of parameters C1 and C2 (GB) with a powder feed rate of 15 g/min and 

only varying the robot speed (500mm/s vs 800mm/s)  

  

(A1)       (C1) 

Fig. 8: Comparison of parameters A1 (NGB) and C1 (GB) with a power feed rate of 5gm/min 

and 15 g/min respectively but with identical robot speed of 500 mm/s in both cases. 
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(A2)       (C2) 

Fig. 9: Comparison of parameters A2 (NGB) vs C2 (GB) with a powder feed rate of 5g/min 

and 15/min respectively but with identical robot speed of 800mm/s in both cases 

 

(A1)       (B1) 

Fig. 10: Comparison of parameters A1 (NGB with powder) and B1 (NGB with no powder) at 

identical robot speeds of 500 mm/s 
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(A2)       (B2) 

Fig. 11: Comparison of parameters A2 (NGB powder) and B2 (NGB no powder) at identical 

robot speeds of 800 mm/s 

 

(A1)       (D1) 

Fig 12: Comparison of parameters A1 (NGB powder) with that of D1 (gun off angle, GB 

powder) at identical robot speeds of 500mm/s 
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(A2)       (D2) 

Fig. 13: Comparison of parameters A2 (NGB powder with gun normal to the surface,) with 

that of D2 (GB powder with gun off angle) at identical robot speeds of 800 mm/s 

 

Like Fig. 10, Fig. 11 portrays a consistent trend: even at elevated robot speeds, a poorly 

prepared or non-grit blasted (NGB) surface combined with the absence of powder does not 

enhance the prospects of superior coating quality. Fig. 12 revealed that the orthogonal gun 

angles (A1) showed clear signal intensities even without grit blasting compared to off angle 

spray. While it is inevitable to avoid off angles from complex geometries, the presence of low 

frequency bands in off angle spray against a wide-ranging array of frequencies generated with 

orthogonal spray conditions serve to differentiate the two and therefore gives opportunity for 

optimising the gun angle.  

Fig. 13 showed similar observations for increased robot speeds although it was found that the 

signal frequencies of off angle spray were captured better with high robot speed and therefore 

inevitable off angle spray processes could be made better with increased robot speeds. 

Comparison of parameters A2 and D2 show that off angle spray is much like a NGB surface 

and will lead to poor deposition efficiency and thickness build-up rate. This study helped to 

provide a comparison of interrelations between critical spray parameters and how they can 

affect the acoustic frequency wave generation. The study was aimed at proving that acoustic 
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data generation could successfully digitize a manufacturing process that has largely remained 

a skilled intensive manual process.  

The effect of one variable and the influence of one to more variables combined is a quite 

complex thing to understand and therefore, it is difficult to identify the root cause of the coating 

failure. The definition of a failed coating depends on the specification that each coating must 

comply with. For example, a TBC topcoat with a porosity range of 5-10% could end up being 

>10 % or less than 5% thereby rendering the coating as failed and causing it to rework. If this 

can be mapped while the coating deposition is in process and corrective action could be taken, 

then we can save the entire coating from being stripped and reworked. This is where the 

acoustic emission data would help creating a unique signature of what will constitute a low 

porosity or a high porosity regime. Every single deviation or anomaly in thermal spray could 

be mapped and a standard acoustic wave pattern could be created while the particles are 

impacting the substrate. The scope of the work could be confirmed to thin coatings of the order 

of 100-200 microns. Thick coatings of the order of 1 mm will need more detailed studies and 

are beyond the scope of this work.   

Consequently, acoustic data collected by grit blasting and non-grit blasting at 90˚ angle was 

used to train three deep-learning models and compare their performances. 

5.0. DL based binary classification models for thermal spray acoustic digital data  

 

As discussed earlier, a Convolutional Neural Network (CNN) model may provide exemplary 

results in image classification tasks. The standard CNN architecture is composed of three major 

types of layers: Convolutional layer, Pooling layer and fully connected layer. A convolutional 

layer is the foremost and fundamental layer, where all the major computation occurs. It receives 

the input data, typically as an image, which is scanned by a feature detector, also known as a 

kernel or a filter which checks for features. This process is known as convolution. A feature 
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map is generated after the whole image has been swept by the feature detector. Pooling layers 

reduce the number of parameters from the input either by selecting the pixel with the maximum 

value or by calculating the average of all the pixels present. Thus, these layers help to reduce 

the complexity of data, mitigate the risk of overfitting and improve the efficiency of the 

algorithm. Fully connected layers are interconnected in the sense that the inputs from the layer 

are connected to every unit of the upcoming layer. These layers flatten the output of the pooling 

and convolutional layers into a single vector. The last fully connected layer represents the 

output of the network. The architecture is shown in fig 14. 

 

Fig.14: Standard CNN architecture with an input of 37.5 ms long spectrogram image   

 

Two aspects central to efficient CNN models are the amount of available data and the 

computational expense of the model. In a thermal spray environment, gathering large amounts 

of data is often very time-consuming and poses monetary constraints. This task becomes more 

unsuitable in anomaly detection tasks where data from production-failure scenarios is 

unrealistic to produce. Even if large amount of data is captured, a computationally intensive 

CNN model will require multiple processing units to learn and train to produce reliable results. 

In order to eliminate the expensive and time-consuming exercise of training CNN models from 

scratch each time, a transfer learning approach can be used. Transfer learning is a popular 

method which utilizes knowledge learned from different but related tasks to solve a specific 

task. It is most applicable in situations where data availability is limited, and data from two 
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tasks: Source and target, are similar in nature. To achieve transfer learning functionally, pre-

trained neural network models can be used. Such model architectures are trained on large and 

complex datasets such as ImageNet, which contains millions of labelled images, allowing them 

to extract highly abstract and complex features from input data. VGG 16 is one such model; it 

has 13 convolutional layers, followed by 3 fully connected layers. 

To demonstrate the effectiveness of implementing transfer learning, the study implemented 

three DL models for a binary classification task. First one was a VGG 16 model, pre-trained 

on ImageNet database. The second model was VGG 16, with all its layers trainable and hence 

untrained. The third model was a custom built 6 layered CNN model. The target dataset used 

are the spectrogram images of Grit and Non-Grit blasted surface acoustic emissions, discussed 

in section 3.   

The training of models comprised of: 

1.  Data preparation: Initial aspects are described in the research methodology action, involving 

the collection of grit and non-grit acoustic data, its trimming and the conversion of acoustic 

dataset to the spectrogram dataset. Subsequently, the spectrogram dataset was labelled with 

two classes- Grit (GB) and Non-Grit (NGB), each class having 200 images. After the random 

train-test split of data, the images were label encoded to finalize the input image data.  

2. Model Creation and Tuning: Architecture of the three models were defined. The hyper-

parameters were passed as arguments based on hyper-parameter tuning. To tune the pre-trained 

VGG 16 for our dataset, first 11 layers were frozen while the rest were unfrozen. This step 

ensured that the pre-trained model incorporated the target dataset features into its training. The 

fully un-trained VGG 16 had all its layers unfrozen and hence fully trainable. Custom layers 

were added to both the models for additional training on our dataset. The 6 layered CNN model 



Accepted in Mechanical Systems and Signal Processing – 11.12.2023 

25 
 

had the same input shape as the VGG models, and custom fully connected layers were added. 

These layers included dropout layers to ensure mitigation of overfitting. 

3. Hyper-Parameters Tuning: GridSearchCV was used to ensure optimal hyper-parameters for 

the models training. 10-fold Cross Validation step was also passed as an argument to the search 

process. Addition of parameter space in GridSearchCV increases resource constraints, hence 

other methods such as RandomSearchCV can be adopted to bypass high GPU and memory 

requirements. 

4. Evaluation metric: Since the dataset was balanced, accuracy was taken as the evaluation 

metric. Other metrics, such as the F1 score, ROC-AUC, can be implemented to adapt with any 

imbalanced dataset attributes. 

The Pre-Trained (PT) VGG 16 model results shown in fig 15(a) achieved a test accuracy score 

of 85% in 200 epochs, followed by Un-Trained (UT) VGG 16 shown in fig 15(b) which 

achieved an accuracy of 80 % in 280 epochs, while the 6 layered CNN achieved an accuracy 

of 77% in 278 epochs (see fig 15(c)).  

 

(a)                                                                               (b) 
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(c) 

Fig.15: Accuracy graphs of (a) Pre-Trained VGG 16, (b) Un-Trained VGG 16 and (c) 6 

layered CNN     

 

The fluctuations in the graphs are due to smaller batch sizes, learning rates and usage of 

Stochastic Gradient Descent (SGD) optimisation algorithm. These parameters were decided 

based on minimal GPU and memory requirements along with the diminutive nature of the data. 

The 6 layered CNN, in comparison to the VGG 16 models, showed more drastic fluctuations 

due to its relatively lesser complexity and optimization.  

The UT VGG 16 graph indicates sensitivity to the training and test data, but due to additional 

optimisations in the core architecture it offers quicker training and slightly better performance 

than the conventional CNN. In learning more intricate features, the pre-trained weights of the 

PT VGG 16 give an edge over the UT VGG 16, hence the quicker training and greater accuracy 

of the PT VGG 16 model. To prevent overfitting, regularization techniques and early callbacks 

were implemented in all the models.  

While the results illustrate the superiority of the transfer learning approach, various factors 

would govern the applicability of a DL model in an industrial environment. The effectiveness 

of Transfer Learning is gauged by the relation of the pre-trained task and the target task. If the 
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two tasks are highly unrelated, the pre-learnt weights and features will not align well with the 

requirements, thus nullifying the benefit of reduced training time. In such a case, custom built 

CNN networks can prove to be more competent, as their architecture can be tailored to the 

requirements of the task. Their capability is amplified in cases where images have generic or 

high level features, thus enabling less complex models to train well and avoid overfitting. 

Whereas if some relation exists between the pre-learnt tasks and the target task, transfer 

learning can offer major advantages. Further detailed comparisons and use cases of these 

models are elaborated in table 3. 

Table 3: Use case comparison of a custom CNN with VGG 16 along different criteria 

Dimension VGG 16 Custom CNN 

Relation between 

tasks / processes 

Useful in correlated tasks, offers 

reduced training time and economical 

resource consumption. Essential in 

production failure scenarios. 

Note- Tuning and addition of custom 

layers required to increase 

effectiveness. 

Useful in unrelated tasks. Can be 

tailored for a specific task and is less 

constrained in terms of core-

architectural modifications. 

Note- Can serve as a primary transfer 

learning model itself for subsequent 

related processes. 

Data Availability Given domain adaptation, it can work 

well with training small and large 

datasets, especially with intricate 

features.  

Note - More prone to overfitting in 

smaller datasets. 

Works well with larger datasets. 

Smaller datasets are more prone to 

overfitting. 

Note- A less complex and small 

architecture can work well with small 

and uncomplicated datasets. 

Tuning and 

optimization steps 

● Unfreezing last few layers and 

addition of custom layers at the 

end.  

● Hyperparameter tuning can be 

computationally expensive due to 

larger number of hyperparameters. 

● The core design is optimized with 

regularization techniques and 

parameter initialization. 

● In case of limited training data, 

data augmentation is always useful 

in prevent overfitting. 

● Changes in architecture design 

such as number of layers and 

filters, type of pooling layers, 

activation functions, etc. 

● Hyperparameter tuning using 

GridSearch, RandomSearch, 

genetic algorithm or other 

techniques. 

● Regularization techniques like L1 

or L2, dropout layers, etc. should 

be done to mitigate overfitting. 

● Data augmentation is more 

effective in case the architecture is 

deep and complex. 
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From a future perspective, the results convey two significant pathways to a potential 

advancement in the implementation of Machine Learning-based models in the manufacturing 

domain. Firstly, acoustic emissions can serve as the primary information source in a 

manufacturing process. As discussed earlier in the paper, changes in the critical parameters of 

the spraying process produce characteristic frequencies that are unique to that parameter. These 

characteristic frequencies can be visualised by the spectrograms in the form of varying 

intensities at various frequencies. Figure 5 show the difference in the intensities of the acoustic 

signals from the grit-blasted portion vs the non-grit-blasted portion in the same pass. These 

visualisations not only serve an intuitive sense to the user but also serve as the input for image-

based classification models. The need for expensive, high-quality and high-maintenance 

image-capturing systems to implement Machine Learning-based automation can be replaced 

by simple acoustic measuring devices, since these acoustic measurements can be converted to 

spectrograms and subsequently provide a similar level of features for an image-based CNN 

model to train as an image would provide. It is important to mention that the results of the study 

are applicable to the domain of process parameter monitoring and to the processes where 

characteristic acoustic signatures can be captured. In an industrial setting, data cleaning and 

filtering techniques will be required to remove noise and unnecessary data from the raw 

acoustic data. Unique acoustic signatures corresponding to the defects can labelled, converted 

into spectrograms and used in a CNN model. Hence a future scope of this study’s findings into 

other areas of the manufacturing industry is also feasible. 

Secondly, the study affirmed the efficacy of real-time implementation of transfer learning. In 

addition to the weights already learned from the ImageNet database, the model was able to 

train quickly than a conventional CNN on the lab recorded spectrogram dataset. In a production 

environment, although changing the parameters of a process will alter the process dynamics, 

transfer learning-based image classification models can adapt and train quickly to give accurate 
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results. Hence, pre-trained CNN models can become more viable for real-time process 

monitoring applications while being less resource intensive as compared to a conventional 

untrained CNN model. 

6.0. Conclusions 

Thermal spraying is a surface manufacturing process used in various engineering sectors to 

produce components that enables swift operations in extreme environments. Digitalisation of 

thermal spraying process using non-invasive means continues to pose immense challenges. 

Previous attempts, as noted, largely depended on IR cameras and particle state sensors to 

capture real-time data about the powder particles in the plasma state.  Such methods, however, 

fall short of facilitating real-time controls essential for the manufacturing process. .  

In this study, data gathered from process anomalies have been presented as a digital display 

dashboard for robot speed, powder flow, grit blast and off angle impact changes. We have 

successfully created a transfer learning for grit and no grit substrate coated with thermal spray 

and allowed the transfer learning model to learn and predict the grit blasting and no grit blasting 

conditions as accurately as possible. Thus, this model could be extended to train and predict all 

such anomalies that happen during the thermal spray manufacturing process.  

This novel study provides a disruptive approach in obtaining the in-flight data during thermal 

spraying through acoustic emission sensing to enable real-time intervention during 

manufacturing. Our suggested approach can help to correct the process anomalies to serve as a 

pathway to digitization of thermal spray. The sensitivity of the acoustic spectrum to respond to 

the process changes during thermal spray such as the feed rate, robot speed, surface preparation 

and off angle spray were investigated and the findings we report here constitute the first step 

in digitization of thermal spray manufacturing. We also evaluated a testbed to train the acoustic 

data into a transfer learning model using Convoluted Neural Networks (CNN). The primary 
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learnings from this study were that the changes in robot speed changes, off angle deposition, 

powder feed interruptions, non-grit blasted surfaces are sensitive to the acoustic frequency and 

this information was used and analysed to understand various correlations between spraying 

parameters and conditions.  

In conclusion, this research paves the way for a transformative approach to thermal spray 

manufacturing, anchoring on the synergy of acoustic emissions and advanced machine learning 

paradigms. 
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Supplementary Information 

 

Table S1: Critical spray parameters used in this investigation. 

Particle, Plume and substrate temperature ℃ 

Particle Flux (number of particles crossing a given 

window (in square mm in the diagnostics camera) 

No. of particles/sec 

Particle Velocity m/s 

Splat size aspect ratio L/D aspect ratio unitless (it is just a 

ratio. Higher the L/D higher is the 

splatting 

Thickness and number of Passes (time period) Microns and numbers 

Residual stress in the coating MPa 

 

 



Table S2: Parameter conditions that were tested for monitoring the acoustic emission pattern 

 

 

Spraying conditions  
Powder flow 

rate (g/m) 
Substrate condition 

Robot speed 

(mm/s) 

Gun angle (˚)/ 

Number of passes 

Low feed rate on a non-grit blasted surface at 90-degree gun 

angle 

     A1 

 
5 No grit blast (NGB) 500 90/1 

A2 5 No grit blast 800 90/1 

No feed rate on a non-grit blasted surface at 90-degree gun angle 

B1 0 No grit Blast 500 90/1 

B2 0 No grit blast 800 90/1 

High feed rate on a grit blasted surface at 90-degree gun angle 

 

C1 
15 Grit Blasted (GB) 500 90/5 

C2 15 Grit Blasted 800 90/5 

Low feed rate on a grit blasted surface at 60-degree gun angle 

D1 5 Grit Blasted  500 60/1 

D2 5 Grit Blasted 800 60/1 
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